Evaluation and analysis of dynamics of change of efficiency of grain production in Ukraine by DEA method


Yana Dolgikh
Sumy National Agrarian University
Ukraine

Abstract


Purpose. The purpose of the article is to evaluate and analyze the dynamics of changes in the net technical efficiency of grain and leguminous crops production in Ukraine using the DEA method.

Methodology / approach. There were used the econometric method (to check the quality of input and output parameters of the objects of study) and the DEA method (to assess the level of net technical efficiency of agricultural enterprises and to analyze the dynamics of its change). We used the input-oriented VRS model for the calculations. Input parameters of the model: 1) the area from which cereals and legumes were collected; 2) volume of mineral and organic fertilizers (in nutrients) per 1 ha; 3) the number of tractors and grain harvesting machines per 1 thousand ha. Output parameters: 1) production of grain and leguminous crops; 2) the production of grain and leguminous crops per 1 person.

Results. The peculiarities of application of the DEA method for assessing and analyzing the dynamics of changes in the efficiency of agricultural enterprises were revealed. Based on the statistical information for 2017–2018, with a help of the DEA method it was assessed the net technical efficiency of the work of agricultural enterprises in the regions of Ukraine in the production of grain and leguminous crops. An analysis of the estimated effectiveness was carried out, which revealed the presence of potential for its improvement. We calculated indicators characterizing the change in the net technical efficiency of agricultural enterprises in the regions of Ukraine during 2017–2018, namely, the growth coefficients of net technical efficiency without taking into account the shift of the effective border, the coefficients of technical progress, and the Malmquist indices. It was analyzed the dynamics of change in efficiency, which revealed trends in the development of regions.

Originality / scientific novelty. The article presents the results of the study that substantiate the possibility and expediency of application of the DEA method to evaluate and analyze the dynamics of changes in the performance of agricultural enterprises in Ukraine. The procedure of evaluation and analysis of the dynamics of changes in the efficiency of agricultural enterprises in Ukraine has been improved.

Practical value / implications. The research results can be used to rank the regions by the efficiency of agricultural production, analyze the dynamics of changes in efficiency in order to identify trends in the development of regions, assess their resource potential and develop recommendations for bringing regions to an effective level of development.


Keywords


pure technical efficiency; DEA method; VRS-input model; Malmquist index; agricultural enterprises; cereals and leguminous crops.

References


Список використаних джерел

Farrell M. J. The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A. 1957. Vol. 120. No. 3. Pp. 253–290. https://doi.org/10.2307/2343100.

Charnes A., Cooper W. W., Rhodes E. Measuring the efficiency of decision making units. European Journal of Operational Research. 1978. Vol. 2. No. 6. Pp. 429–444. https://doi.org/10.1016/0377-2217(78)90138-8.

Emrouznejad A., Yang G. L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Journal of Socio-Economic Planning Science. 2018. Vol. 61. Pp. 4–8. https://doi.org/10.1016/j.seps.2017.01.008.

Bagchi M., Rahman S., Shunbo Y. Growth in Agricultural Productivity and Its Components in Bangladeshi Regions (1987–2009): An Application of Bootstrapped Data Envelopment Analysis (DEA). Economies. 2019. Vol. 7(2). 37. https://doi.org/10.3390/economies7020037.

Baležentis T., Baležentis A. Dynamics of the total factor productivity in Lithuanian family farms with a statistical inference: the bootstrapped Malmquist indices and Multiple Correspondence Analysis. Economic Research–Ekonomska Istraživanja. 2016. Vol. 29. Is. 1. Pp. 643–664. https://doi.org/10.1080/1331677X.2016.1193946.

Błażejczyk-Majka L., Kala R. Concentration and productivity of livestock and mixed farms in new and old EU member states. A regional level approach. Journal of Central European Agriculture. 2015. Vol. 16. Is. 1. Pp. 159–176. https://doi.org/10.5513/JCEA01/16.1.1558.

Dakpo K. H., Jeanneaux Ph., Latruffe L. Greenhouse gas emissions and efficiency in French sheep meat farming: A non-parametric framework of pollution-adjusted technologies. European Review of Agricultural Economics. 2017. Vol. 44. Is. 1. Pp. 33–65. https://doi.org/10.1093/erae/jbw013.

Le T. L., Lee P.-P., Peng K. Ch., Chung R. H. Evaluation of total factor productivity and environmental efficiency of agriculture in nine East Asian countries. Agricultural Economics – Czech. 2019. Vol. 65. Pp. 249–258. https://doi.org/10.17221/50/2018-AGRICECON.

Li N., Jiang Y., Yu Zh., Shang L. Analysis of Agriculture Total-Factor Energy Efficiency in China Based on DEA and Malmquist indices. Energy Procedia. 2017. Vol. 142. Pp. 2397–2402. https://doi.org/10.1016/j.egypro.2017.12.173.

Liu Sh., Zhang P., He X., Li J. Efficiency change in North-East China agricultural sector: A DEA approach. Agricultural Economics – Czech. 2015. Vol. 61. Pp. 522–532. https://doi.org/10.17221/233/2014-AGRICECON.

Pongpanich R., Peng K.-C., Wongchai A. The performance measurement and productivity change of agro and food industry in the stock exchange of Thailand. Agricultural Economics – Czech. 2018. Vol. 64. Pp. 89–99. https://doi.org/10.17221/15/2016-AGRICECON.

Андрійчук В. Г., Андрійчук Р. В. Метод аналізу оболонки даних (DEA) у вимірі та оцінці ефективності діяльності підприємств. Економіка АПК. 2011. № 7. С. 81–88.

Дем’яненко С. І., Нів’євський О. В. Непараметричний аналіз в АПК. Київ: КНЕУ, 2009. 195 с.

Лисситса А., Бабичева Т. Анализ оболочки данных (DEA). Современная методика определения эффективности производства. Halle: Institute of agricultural development of Central and Eastern Europe, Germany, 2003. 32 p.

Скрипник А. В., Жемойда О. В., Букін Е. К. Аналіз ефективності виробництва пшениці за методом Data Envelopment Analysis (DEA). Економіка АПК. 2017. № 1. С. 15–23.

Emrouznejad A., Tavares B., Tavares G. Evaluation of research in efficiency and productivity: A survey an analysis of the first 30 years of scholarly literature in DEA. Journal of Socio-Economic Planning Science. 2008. Vol. 42. No. 3. Pp. 151–157. https://doi.org/10.1016/j.seps.2007.07.002.

Cooper W. W., Seiford L. M., Tone K. Data envelopment analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Second Edition. New York: Springer Science&Business Media, LLC, 2007. 490 p. https://doi.org/10.1007/978-0-387-45283-8

Рослинництво України за 2018 рік: статистичний збірник. Київ: Державна служба статистики України, 2019. 220 с.

Внесення мінеральних та органічних добрив у сільськогосподарських підприємствах під урожай сільськогосподарських культур 2017 року. URL: http://www.ukrstat.gov.ua.

Сільське господарство України у 2017 році: статистичний збірник. Київ: Державна служба статистики України, 2018. 242 с.

Використання добрив і пестицидів під урожай сільськогосподарських культур 2018 року. URL: http://www.ukrstat.gov.ua.

Придбання підприємствами матеріально-технічних ресурсів для виробничих потреб у 2018 році. URL: http://www.ukrstat.gov.ua.

Бабенко В. В. Основи теорії ймовірностей і статистичні методи аналізу даних у психологічних і педагогічних експериментах. Львів, 2009. 184 с.

References

Farrell, M. (1957), The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A, vol. 120, no. 3, pp. 253–290. https://doi.org/10.2307/2343100.

Charnes, A., Cooper, W. and Rhodes, E. (1978), Measuring the efficiency of decision making units. European Journal of Operational Research, vol. 2, no. 6, pp. 429–444. https://doi.org/10.1016/0377-2217(78)90138-8.

Emrouznejad, A. and Yang, G. (2018), A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Journal of Socio-Economic Planning Science, vol. 61, pp. 4–8. https://doi.org/10.1016/j.seps.2017.01.008.

Bagchi, M., Rahman, S. and Shunbo, Y. (2019), Growth in Agricultural Productivity and Its Components in Bangladeshi Regions (1987–2009): An Application of Bootstrapped Data Envelopment Analysis (DEA). Economies, vol. 7(2), 37. https://doi.org/10.3390/economies7020037.

Baležentis, T. and Baležentis, A. (2016), Dynamics of the total factor productivity in Lithuanian family farms with a statistical inference: the bootstrapped Malmquist indices and Multiple Correspondence Analysis. Economic Research-Ekonomska Istraživanja, vol. 29, is. 1, pp. 643–664. https://doi.org/10.1080/1331677X.2016.1193946.

Błażejczyk-Majka, L. and Kala, R. (2015), Concentration and productivity of livestock and mixed farms in new and old EU member states. A regional level approach. Journal of Central European Agriculture, vol. 16, is. 1, pp. 159–176. https://doi.org/10.5513/JCEA01/16.1.1558.

Dakpo, K. H., Jeanneaux, Ph. and Latruffe, L. (2017), Greenhouse gas emissions and efficiency in French sheep meat farming: A non-parametric framework of pollution-adjusted technologies. European Review of Agricultural Economics, vol. 44, is. 1, pp. 33–65. https://doi.org/10.1093/erae/jbw013.

Le, T. L., Lee, P.-P., Peng, K. Ch. and Chung, R. H. (2019), Evaluation of total factor productivity and environmental efficiency of agriculture in nine East Asian countries. Agricultural Economics – Czech, vol. 65, pp. 249–258. https://doi.org/10.17221/50/2018-AGRICECON.

Li, N., Jiang, Y., Yu, Zh. and Shang, L. (2017), Analysis of Agriculture Total-Factor Energy Efficiency in China Based on DEA and Malmquist indices. Energy Procedia, vol. 142, pp. 2397–2402. https://doi.org/10.1016/j.egypro.2017.12.173.

Liu, Sh., Zhang, P., He, X. and Li, J. (2015), Efficiency change in North-East China agricultural sector: A DEA approach. Agricultural Economics – Czech, vol. 61, pp. 522–532. https://doi.org/10.17221/233/2014-AGRICECON.

Pongpanich, R., Peng, K.-C. and Wongchai, A. (2018), The performance measurement and productivity change of agro and food industry in the stock exchange of Thailand. Agricultural Economics – Czech, vol. 64, pp. 89–99. https://doi.org/10.17221/15/2016-AGRICECON.

Andriichuk, V. H., and Andriichuk, R. V. (2011), Data Envelopment Analysis (DEA) method for measuring and evaluating enterprise performance. Ekonomika APK, no. 7, pp. 81–88.

Demianenko, S. I. and Nivievskyi, O. V. (2009), Neparametrychnyi analiz v APK [Nonparametric analysis in agroindustrial complex], KNEU, Kyiv, Ukraine.

Lyssytsa, A. and Babycheva, T. (2003), Analyz obolochky dannыkh (DEA). Sovremennaia metodyka opredelenyia эffektyvnosty proyzvodstva [Data Envelopment Analysis (DEA). Modern methodology for determining production efficiency], Institute of agricultural development of Central and Eastern Europe, Halle, Germany.

Skrypnyk, A. V., Zhemoida, O. V. and Bukin, E. K. (2017), Analysis of wheat production efficiency by Data Envelopment Analysis (DEA). Ekonomika APK, no. 1, pp. 15–23.

Emrouznejad, A., Tavares, B. and Tavares, G. (2008), Evaluation of research in efficiency and productivity: A survey an analysis of the first 30 years of scholarly literature in DEA. Journal of Socio-Economic Planning Science, vol. 42, no. 3, pp. 151–157. https://doi.org/10.1016/j.seps.2007.07.002.

Cooper, W., Seiford, L. and Tone, K. (2007), Data envelopment analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software, Second Edition, New York, USA. https://doi.org/10.1007/978-0-387-45283-8

State Statistics Service of Ukraine (2019), Roslynnytstvo Ukrayiny za 2018 rik. Statystychnyj zbirnyk [Plant Growing of Ukraine in 2018. Statistical yearbook], State Statistics Service of Ukraine, Кyiv, Ukraine.

The official site of State Statistics Service of Ukraine (2018), Use of fertilizers and pesticides in the 2017 crop, available at: www.ukrstat.gov.ua.

State Statistics Service of Ukraine (2018), Sil's'ke hospodarstvo Ukrayiny za 2017 rik. Statystychnyi zbirnyk [Agriculture of Ukraine for 2017. Statistical yearbook], State Statistics Service of Ukraine, Кyiv, Ukraine.

The official site of State Statistics Service of Ukraine (2019), Use of fertilizers and pesticides in the 2018 crop, available at: www.ukrstat.gov.ua.

The official site of State Statistics Service of Ukraine (2019), Buying enterprises of material and technical resources for production needs in 2018, available at: www.ukrstat.gov.ua.

Babenko, V. V. (2009), Osnovy teoriyi ymovirnostey i statystychni metody analizu danykh u psykholohichnykh i pedahohichnykh eksperymentakh: [Fundamentals of Probability Theory and Statistical Methods for Data Analysis in Psychological and Pedagogical Experiments], Lviv, Ukraine.


Refbacks

  • There are currently no refbacks.


This journal is published under the terms of the Creative Commons Attribution Licens 4.0 International (CC BY 4.0).

 

© Agricultural and Resource Economics: International Scientific E-Journal, 2015–2019.

Open Science in Ukraine

Open Science in Ukraine