Evaluating the impact of water resources on the economic growth of countries

Authors

DOI:

https://doi.org/10.51599/are.2021.07.04.11

Keywords:

economic growth, agricultural sector, virtual water, region, state.

Abstract

Purpose. The purpose of the article is to determine the impact of domestic renewable water resources in the country on the formation of GDP, i.e to identify the relationship between the country's water potential and its economic growth in the future, due to the growth of water-intensive technologies in the world and agricultural development.

Methodology / approach. The traditional and special research methods were used in the study, including: historical and logical – to analyze the dynamics of water use in the world and ways of forming the flow of virtual water; theoretical generalization, analysis and synthesis – to form an understanding of the “principle of globality of water problems” and derive consistent pattern of “principle of globality of water problems”; statistical analysis to assess the level of needs of countries (regions) in water resources and to assess the level of GDP of countries in comparison with their water potential; method of econometric analysis (correlation analysis and linear regression) – to prove the relationship between the water potential of the country and its economic growth in the future.

Results. The main idea of the study is to identify the relationship between the country's water potential and its economic growth in the future. It was found that almost all areas with the highest economic growth have the largest total number of inland renewable water resources. the knowledge and dynamics of virtual water trade in the world was described and summarized. According to the principles of the concept of “virtual water”, regions with water scarcity and spatial mismatch between water resources and the availability of arable land can increase their food security by meeting part of their food needs through trade in agricultural products and reducing local food production. A new principle of development of the territory “the principle of globality of water problems” has been substantiated in the study. It is determined that the very availability of domestic renewable water resources in the country does not have a significant impact on GDP growth, but the total catchment per capita in the country already has a significant impact on GDP, i.e, indeed, after reaching a certain water scarcity threshold, the country begins to demand for grain imports, which increases as water resources decrease. The consistent pattern of the “principle of globality of water problems” was proved mathematically, using econometric analysis.

Originality / scientific novelty. The formation of the principles of territorial development was further developed, namely the “principle of globality of water problems” was formulated – the change of humanity's attitude to the water resource has formed an understanding of its limitations and possible global scenarios of world development. The development of the laws of economic theory was improved, namely the consistent pattern of the “principle of globality of water problems” – “axes (corridors) of development of the territory, which together with the poles of growth determine the spatial framework of economic growth, in the light of the globalization of water problems, are determined by the presence of the total number of domestic renewable water resources”.

Practical value / implications. The results of the study allow a comprehensive assessment of the risks of the agricultural sector associated with the large-scale use of water resources and make effective management decisions on the development and implementation of water-efficient technologies in Ukraine and in the world. The study actualizes the thesis of infrastructure regulation as water-intensive technologies will require significant infrastructure projects and the appropriate quality of water and water supply and sewerage infrastructure as the basis of water efficiency of the region and the country.

References

1. UN World Water Development Report 4: Managing Water under Uncertainty and Risk. Paris: UNESCO, 2012. URL: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012.
2. Chen W., Kang J.-N., Han M. S. Global environmental inequality: evidence from embodied land and virtual water trade. Science of the Total Environment. 2021. Vol. 783. 146992. https://doi.org/10.1016/j.scitotenv.2021.146992.
3. Palmer M. A., Liu J., Matthews J. H., Mumba M., D’Odorico P. Manage water in a green way. Science. 2015. Vol. 349. Is. 6248. Pp. 584–585. https://doi.org/10.1126/science.aac7778.
4. Suweis S., Konar M., Dalin C., Hanasaki N., Rinaldo A., Rodriguez-Iturbe I. Structure and controls of the global virtual water trade network. Geophysics Research Letters. 2011. Vol. 38. L10403. https://doi.org/10.1029/2011GL046837.
5. Chen G. Q., Li J. S. Virtual water assessment for Macao, China: highlighting the role of external trade. Journal of Cleaner Production. 2015. Vol. 93. Рр. 308–317. https://doi.org/10.1016/j.jclepro.2015.01.020.
6. Wang Yu., Zhou Li, Jia Q., Yu W. Water use efficiency of a rice paddy field in Liaohe Delta, Northeast China. Agricultural Water Management. 2017. Vol. 187. Рр. 222–231. https://doi.org/10.1016/j.agwat.2017.03.029.
7. Hoekstra, A. Y., Chapagain, A. K., van Oel, P. R. Advancing water footprint assessment research: challenges in monitoring progress towards Sustainable Development Goal 6. Water. 2017. Vol. 9. Is. 6. 438. https://doi.org/10.3390/w9060438.
8. Wichelns D. Virtual water: a helpful perspective, but not a sufficient policy criterion. Water Resources Management. 2010. Vol. 24. Рр. 2203–2219. https://doi.org/10.1007/s11269-009-9547-6.
9. Vörösmarty C. J., McIntyre P. B., Gessner M. O., Dudgeon D., Prusevich A., Green P., Glidden S., Bunn S. E., Sullivan C. A., Liermann C. R., Davies P. M. Global threats to human water security and river biodiversity. Nature. 2010. Vol. 467. Рр. 555–561. https://doi.org/10.1038/nature09440.
10. Hoekstra A. Y. Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecological Economics. 2009. Vol. 68. Is. 7. Рр. 1963–1974. https://doi.org/10.1016/j.ecolecon.2008.06.021.
11. Mekonnen M. M., Hoekstra A. Y. Four billion people facing severe water scarcity. Science Advances. 2016. Vol. 2. No. 2. e1500323. https://doi.org/10.1126/sciadv.1500323.
12. Hartmann A., Gleeson T., Wada Yо., Wagener Th. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. PNAS. 2017. Vol. 114. No. 11. Pр. 2842–2847. https://doi.org/10.1073/pnas.1614941114.
13. Dong B., Mao Zh., Brown L., Chen X., Peng Li, Wang J. Irrigation ponds: possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System. Science in China Series E: Technological Sciences. 2009. Vol. 52. 3320. https://doi.org/10.1007/s11431-009-0364-1.
14. Antonelli M., Tamea S. Food-water security and virtual water trade in the Middle East and North Africa. International Journal of Water Resources Development. 2015. Vol. 31. Is. 3. Рр. 326–342. https://doi.org/10.1080/07900627.2015.1030496.
15. Fedulova S., Pivovarov O., Khudolei V., Komirna V., Kalynovskyi A. Water infrastructure and economic security of regional socio-economic systems: evidence from Ukraine. Problems and Perspectives in Management. 2020. Vol. 18. Is. 2. Pр. 166–179. https://doi.org/10.21511/ppm.18(2).2020.15.
16. Офіційний сайт Продовольчої і сільськогосподарської організації Об’єднаних націй (ФАО). URL: http://www.fao.org.
17. UA World Water Development Report 2021: Valuing water. Paris: UNESCO? 2021. URL: https://www.unwater.org/publications/un-world-water-development-report-2021.
18. Zareie S., Bozorg-Haddad O., Loáiciga H. A. A state-of-the-art review of water diplomacy. Environment, Development and Sustainability. 2021. Vol. 23. Рр. 2337–2357. https://doi.org/10.1007/s10668-020-00677-2.
19. Ringler C., Zhu T. Water resources and food security. Agronomy Journal. 2015. Vol. 107. No. 4. Pp. 1533–1538. https://doi.org/10.2134/agronj14.0256.
20. Ritchie H., Roser M. Water use and stress. URL: https://ourworldindata.org/water-use-stress#citation.
21. Allan J. A. Virtual water: a strategic resource. Global solutions to regional deficits. Groundwater. 1998. Vol. 36. Is. 4. Pр. 545–546. https://doi.org/10.1111/j.1745-6584.1998.tb02825.x.
22. Water Footprint Network. URL: http://www.waterfootprint.org.
23. Graham N. T., Hejazi M. I., Kim S. H., Davies E. G. R., Edmonds J. A., Miralles-Wilhelm F. Future changes in the trading of virtual water. Nature communications. 2020. Vol. 11. 3632. https://doi.org/10.1038/s41467-020-17400-4.
24. Yang H., Reichert P., Abbaspour K. C., Zehnder A. J. B. A water resources threshold and its implications for food security. Environmental Science and Technology. 2003. Vol. 37. Is. 14. Рр. 3048–3054.
25. Yang H., Wang L., Zehnder A. J. B. Water scarcity and food trade in the Southern and Eastern Mediterranean countries. Food Policy. 2007. Vol. 32. Is. 5–6. Pр. 585–605. https://doi.org/10.1016/j.foodpol.2006.11.004.
26. Яцик А. В., Томільцева А. І., Мокін В. Б. та ін. Екологічні основи управління водними ресурсами. Київ: Інститут екологічного управління та збалансованого природокористування, 2017. 200 с.
27. Яцик А. В., Грищенко Ю. М., Волкова Л. А., Пашенюк І. А. Водні ресурси: використання, охорона, відтворення, управління. Київ: Генеза, 2007. 360 с.
28. Офіційний сайт Міжнародного валютного фонду. URL: http://www.imf.org/external/datamapper/ngdpd@weo/oemdc/advec/weoworld/rus/ukr.
29. Fedulova S., Dubnytskyi V., Komirna V., Naumenko N. Economic development management in a water-capacious economy. Problems and Perspectives in Management. 2019. Vol. 17. Is. 3. Рр. 259–270. https://doi.org/10.21511/ppm.17(3).2019.21.
30. Fedulova S., Dubnytskyi S., Naumenko N., Komirna V., Melnikova I., Agabekov B. Effective economic growth under conditions of regional water management dependence. Agricultural and Resource Economics. 2021. Vol. 7. No. 1. Pp. 22–43. https://doi.org/10.51599/are.2021.07.01.2.

References
1. UN World Water Development Report 4: Managing Water under Uncertainty and Risk (2012). Paris, UNESCO, available at: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012.
2. Chen, W., Kang, J.-N. and Han, M. S. (2021), Global environmental inequality: evidence from embodied land and virtual water trade. Science of the Total Environment, vol. 783, 146992. https://doi.org/10.1016/j.scitotenv.2021.146992.
3. Palmer, M. A., Liu, J., Matthews, J. H., Mumba, M. and D’Odorico, P. (2015), Manage water in a green way. Science, vol. 349, is. 6248, pp. 584–585. https://doi.org/10.1126/science.aac7778.
4. Suweis, S., Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A., Rodriguez-Iturbe, I. (2011), Structure and controls of the global virtual water trade network. Geophysics Research Letters, vol. 38, L10403. https://doi.org/10.1029/2011GL046837.
5. Chen, G. Q. and Li, J. S. (2015), Virtual water assessment for Macao, China: highlighting the role of external trade. Journal of Cleaner Production, vol. 93, рр. 308–317. https://doi.org/10.1016/j.jclepro.2015.01.020.
6. Wang, Yu., Zhou, Li, Jia, Q. and Yu, W. (2017), Water use efficiency of a rice paddy field in Liaohe Delta, Northeast China. Agricultural Water Management, vol. 187, рр. 222–231. https://doi.org/10.1016/j.agwat.2017.03.029.
7. Hoekstra, A. Y., Chapagain, A. K. and van Oel, P. R. (2017), Advancing water footprint assessment research: challenges in monitoring progress towards Sustainable Development Goal 6. Water, vol. 9, is. 6, 438. https://doi.org/10.3390/w9060438.
8. Wichelns, D. (2010), Virtual water: a helpful perspective, but not a sufficient policy criterion. Water Resources Management, vol. 24, рр. 2203–2219. https://doi.org/10.1007/s11269-009-9547-6.
9. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R. and Davies, P. M. (2010), Global threats to human water security and river biodiversity. Nature, vol. 467, рр. 555–561. https://doi.org/10.1038/nature09440.
10. Hoekstra, A. Y. (2009), Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecological economics, vol. 68, is. 7, рр. 1963–1974. https://doi.org/10.1016/j.ecolecon.2008.06.021.
11. Mekonnen, M. M. and Hoekstra, A. Y. (2016), Four billion people facing severe water scarcity. Science Advances, vol. 2, no. 2, e1500323. https://doi.org/10.1126/sciadv.1500323.
12. Hartmann, A., Gleeson, T., Wada, Yо. and Wagener, Th. (2017), Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. PNAS, vol. 114, no. 11, рр. 2842–2847. https://doi.org/10.1073/pnas.1614941114.
13. Dong, B., Mao, Zh., Brown, L., Chen, X., Peng, Li and Wang, J. (2009), Irrigation ponds: possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System. Science in China Series E: Technological Sciences, vol. 52, 3320. https://doi.org/10.1007/s11431-009-0364-1.
14. Antonelli, M. and Tamea, S. (2015), Food-water security and virtual water trade in the Middle East and North Africa. International Journal of Water Resources Development, vol. 31, is. 3, рр. 326–342. https://doi.org/10.1080/07900627.2015.1030496.
15. Fedulova, S., Pivovarov, O., Khudolei, V., Komirna, V. and Kalynovskyi, A. (2020), Water infrastructure and economic security of regional socio-economic systems: evidence from Ukraine. Problems and Perspectives in Management, vol. 18, is. 2, рр. 166–179. https://doi.org/10.21511/ppm.18(2).2020.15.
16. Official site of the Food and Agriculture Organization of the United Nations (FAO), available at: http://www.fao.org.
17. UA World Water Development Report 2021: Valuing water (2021), Paris, UNESCO, available at: https://www.unwater.org/publications/un-world-water-development-report-2021.
18. Zareie, S., Bozorg-Haddad, O. and Loáiciga, H. A. (2021), A state-of-the-art review of water diplomacy. Environment, Development and Sustainability, vol. 23, рр. 2337–2357. https://doi.org/10.1007/s10668-020-00677-2.
19. Ringler, C. and Zhu, T. (2015), Water resources and food security. Agronomy Journal, vol. 107, no. 4, pp. 1533–1538. https://doi.org/10.2134/agronj14.0256.
20. Ritchie, H. and Roser, M. (2018), Water use and stress, available at: https://ourworldindata.org/water-use-stress#citation.
21. Allan, J. A. (1998), Virtual water: a strategic resource. Global solutions to regional deficits. Groundwater, vol. 36, is. 4, рр. 545–546. https://doi.org/10.1111/j.1745-6584.1998.tb02825.x.
22. Water Footprint Network, available at: http://www.waterfootprint.org.
23. Graham, N. T., Hejazi, M. I., Kim, S. H., Davies, E. G. R., Edmonds, J. A. and Miralles-Wilhelm, F. (2020), Future changes in the trading of virtual water. Nature communications, vol. 11, 3632. https://doi.org/10.1038/s41467-020-17400-4.
24. Yang, H., Reichert, P., Abbaspour, K. C. and Zehnder, A. J. B. (2003), A water resources threshold and its implications for food security. Environmental Science and Technology, vol. 37, is. 14, pр. 3048–3054. https://doi.org/10.1021/es0263689.
25. Yang, H., Wang, L. and Zehnder, A. J. B. (2007), Water scarcity and food trade in the Southern and Eastern Mediterranean countries. Food Policy, vol. 32, is. 5–6, pр. 585–605. https://doi.org/10.1016/j.foodpol.2006.11.004.
26. Yatsyk, A. V., Tomiltseva, A. I., Mokin, V. B. et al. (2017), Ekolohichni osnovy upravlinnia vodnymy resursamy [Ecological bases of water resources management], Institute of Ecological Management and Balanced Environmental Management, Kyiv, Ukraine.
27. Yatsyk, A. V., Hryshchenko, Yu. M., Volkova, L. A. and Pasheniuk, I. A. (2007), Vodni resursy: vykorystannia, okhorona, vidtvorennia, upravlinnia [Water resources: use, protection, reproduction, management], Heneza, Кyiv, Ukraine.
28. Nominal GDP. Official site of the International Monetary Fund, available at: http://www.imf.org/external/datamapper/ngdpd@weo/oemdc/advec/weoworld/rus/ukr.
29. Fedulova, S., Dubnytskyi, V., Komirna, V. and Naumenko, N. (2019), Economic development management in a water-capacious economy. Problems and Perspectives in Management, vol. 17, is. 3, рр. 259–270. https://doi.org/10.21511/ppm.17(3).2019.21.
30. Fedulova, S., Dubnytskyi, S., Naumenko, N., Komirna, V., Melnikova, I. and Agabekov, B. (2021), Effective economic growth under conditions of regional water management dependence. Agricultural and Resource Economics, vol. 7, no. 1, pp. 22–43. https://doi.org/10.51599/are.2021.07.01.2.

Published

2021-12-20

How to Cite

Fedulova, S., Dubnytskyi, V., Myachin, V., Yudina, O., & Kholod, O. (2021). Evaluating the impact of water resources on the economic growth of countries. Agricultural and Resource Economics: International Scientific E-Journal, 7(4), 200–217. https://doi.org/10.51599/are.2021.07.04.11

Issue

Section

Articles

Most read articles by the same author(s)