Methodological toolkit for assessing the level of stability of agricultural enterprises
Abstract
Purpose. The purpose of the study is to develop methodological toolkit for identifying the level of stability of agricultural enterprises based on the study of stochastic series of values of the resulting parameters.
Methodology / approach. During the study, a method of modeling stochastic quantities was used, in particular the Verhulst equation to study the dynamics of the values of the resulting parameter relative to a monotonically increasing series of values and different values of the coefficient of “density accumulation”. The GARCH model was used to predict the values of the variance of the resulting parameter, and regression analysis was used to determine the dependence of the state of enterprises on the factors of internal and external environments.
Results. It is substantiated that the values of the logistic function of Verhulst imitate the behavior of a stochastic quantity. Therefore, this function can be used to measure the transition point of the system from a stable state to a state of instability. It is proved that, taking into account the stochastic and reflective nature of the development of agricultural enterprises, it is expedient to forecast their state on the basis of comparing the variances of the values of the performance parameter. It is reasoned that the application of the function of changing the degree coefficients allows obtaining the most complete information about the influence of subjective factors of the internal environment of agricultural enterprises on their state.
Originality / scientific novelty. Methodological toolkit for identifying the level of stability of agricultural enterprises, which is based on the application of the Verhulst equation to study the dynamics of the values of the resulting parameter relative to the monotonically increasing series of values and different values of the coefficient of “density accumulation”, and, unlike existing parameter from the factors of internal and external environments of the agricultural enterprise.
Practical value / implications. The practical value of the developed methodological toolkit is in the possibility of its use by managers of agricultural enterprises to forecast their state, taking into account the influence of internal and external factors. Given that the prediction is reduced to one resulting parameter, the proposed toolkit is easy to use. It is advisable to use it to justify regulatory decisions, in particular in the process of adaptive management and streamlining of personnel management processes and intellectual potential of employees.
References
2. Колещук О. Я. Інтелектуалізація концептуально-стратегічного мислення в управлінні машинобудівними підприємствами з використанням теорії хаосу. Бізнес-Інформ. 2019. № 11. С. 367–381. https://doi.org/10.32983/2222-4459-2019-11-376-381.
3. Пророк В. Теория хаоса и теория сетей – новые подходы к моделированию политической системы. PolitBook. 2016. № 1. С. 83–91. URL: https://cyberleninka.ru/article/n/teoriya-haosa-i-teoriya-setey-novye-podhody-k-modelirovaniyu-politicheskoy-sistemy/viewer.
4. Hayward T., Preston J. Chaos theory, economics and information: the implications for strategic decision-making. Journal of Information Science. 1999. Vol. 25. Is. 3. Рр. 173–182. https://doi.org/10.1177/016555159902500301.
5. Faggini M., Parziale A. The failure of economic theory. Lessons from chaos theory. Modern Economy. 2012. Vol. 3. No. 1. Рр. 1–10. https://doi.org/10.4236/me.2012.31001.
6. Xia Lu. A financial chaotic system control method based on intermittent controller. Mathematical Problems in Engineering. 2020. Vol. 2020. 5810707. https://doi.org/10.1155/2020/5810707.
7. Zhou W., Chu T., Wang X.-X. Stability, global dynamics, and social welfare of a two-stage game under R&D spillovers. Mathematical Problems in Engineering. 2021. Vol. 2021. 2096868. https://doi.org/10.1155/2021/2096868.
8. Кернасюк Ю. В. Прогноз розвитку аграрного сектору економіки з використанням штучних нейронних мереж. Вісник аграрної науки. 2019. № 6. С. 75–81. https://doi.org/10.31073/agrovisnyk201906-11.
9. Вєдєнєєв В. А. Оцінка ефективності довгострокових моделей прогнозування ціни реалізації продукції аграрного сектору в Україні. Економіка та держава. 2019. № 9. С. 46–51. https://doi.org/10.32702/2306-6806.2019.9.46.
10. Михайленко О. В., Хільченко І. Ю. Аграрний сектор України: сучасний стан, проблеми та перспективи реформування галузі. Modern Economics. 2019. № 15. С. 148–152. https://doi.org/10.31521/modecon.V15(2019)-21.
11. Kozlovskyi S., Khadzhynov I., Lavrov R., Skydan O., Ivanyuta N., Varshavska N. Economic-mathematical modeling and forecasting of competitiveness level of agricultural sector of Ukraine by means of theory of fuzzy sets under conditions of integration into European market. International Journal of Recent Technology and Engineering. 2019. Vol. 8. Is. 4. Рр. 5316–5323 https://doi.org/10.35940/ijrte.D7541.118419.
12. Akullo D., Maat H., Wals A. E. J. An institutional diagnostics of agricultural innovation; public-private partnerships and smallholder production in Uganda. NJAS: Wageningen Journal of Life Sciences. 2019. Vol. 84. Is. 1. Pр. 6–12 https://doi.org/10.1016/j.njas.2017.10.006.
13. Формування збалансованої системи оцінювання підприємств ринку харчової продукції на основі стандарту НАССР: моногр.; за наук. ред. С. В. Князя. Львів: Афіша, 2020. 114 с.
14. Maknickienė N., Stankevičienė J., Maknickas A. Comparison of Forex market forecasting tools based on Evolino ensemble and technical analysis indicators. Romanian Journal of Economic Forecasting. 2020. Vol. 23. Is. 3. Рр. 134–148. URL: https://ipe.ro/rjef/rjef3_20/rjef3_2020p134-148.pdf.
15. Lorenz E. N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences. 1963. Vol. 20. Is. 2. Рр. 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.
16. May R. M. Simple mathematical models with very complicated dynamics. Nature. 1976. Vol. 261. Pр. 459–467. https://doi.org/10.1038/261459a0.
17. Zhang W.-B. Synergetic Economics. Time and Change in Nonlinear Economics. Berlin, Heidelberg: Springer, 1991. 246 p. https://doi.org/10.1007/978-3-642-75909-3.
18. Bacaër N. Verhulst and the logistic equation (1838). A Short History of Mathematical Population Dynamics. London: Springer, 2011. Pp. 35–39. https://doi.org/10.1007/978-0-85729-115-8_6.
19. Розенберг Г. С. K истории модели логистического роста. Бюллетень Самарская Лука. 2006. № 18. С. 188–193.
20. Базыкин А. Д. Нелинейная динамика взаимодействующих популяций. Москва-Ижевск: Институт компьютерных исследований, 2003. 368 с.
21. Щербініна С. А., Михайленко А. С., Свириденко В. О. Дослідження рівня розвитку економічного потенціалу підприємства. Ефективна економіка. 2020. № 1. https://doi.org/10.32702/2307-2105-2020.1.85.
22. Музиченко М. Використання логістичної функції Ферхюльста як функції бажаності для нормування показників безпеки постачання природного газу. Економіка і суспільство. 2017 № 9. С. 83–88. URL: https://economyandsociety.in.ua/journals/9_ukr/13.pdf.
23. Moloney N. R., Dickman R. Functional-integral based perturbation theory for the Malthus-Verhulst process. Brazilian Journal of Physics. 2006. Vol. 36. No. 4A. Pр. 1238–1249. https://doi.org/10.1590/S0103-97332006000700022.
24. Sbardella A., Pugliese E., Zaccaria A., Scaramozzino P. The role of complex analysis in modelling economic growth. Entropy. 2018. Vol. 20. No. 11. 883. https://doi.org/10.3390/e20110883.
25. Halbert L. From sectors to functions: producer services, metropolisation and agglomeration forces in the Ile-de-France region. Belgeo. 2007. Vol. 1. Pp. 73–94. https://doi.org/10.4000/belgeo.11817.
26. Farat O., Lyvdar M. Elaboration of technology for implementing of organizational solutions on the innovative clusters development. Baltic Journal of Economic Studies. 2019. Vol. 5. No. 3. Pp. 207–212. https://doi.org/10.30525/2256-0742/2019-5-3-207-212.
27. Audretsch D. B., Feldman M. P. Innovative clusters and the industry life cycle. Review of Industrial Organization. 1996. Vol. 11. No. 2. Pр. 253–273. https://doi.org/10.1007/BF00157670.
28. Galvin P. Local government, multilevel governance, and cluster-based innovation policy: economic cluster strategies in Canada’s city regions. Canadian Public Administration. 2019. Vol. 62. Is. 1. Pр. 122–150. https://doi.org/10.1111/capa.12314.
29. Johansen F. R., Kerndrup S., Andersson G., Rubach S. A view of clustering as emergent and innovative processes. Industry and Innovation. 2020. Vol. 27. Is. 4. Рр. 390–460. https://doi.org/10.1080/13662716.2020.1718618.
30. Wardhana D., Ihle R., Heijman W. Agro-clusters and rural poverty: a spatial perspective for West Java. Bulletin of Indonesian Economic Studies. 2017. Vol. 53. Is. 2. Pp. 161–186. https://doi.org/10.1080/00074918.2017.1298722.
31. Berdiyev A. H., Dustova M. K. Advantages of introducing agrocluster in agriculture. International Journal on Orange Technologies. 2020. Vol. 2. No. 11. Pр. 37–40. https://doi.org/10.31149/ijot.v2i11.860.
32. Kniaz S., Farat O., Merezhko N., Kozhushko L. et al. Managing the competitiveness of innovation clusters. Proceedings of the 35th International Business Information Management Association (IBIMA), 1–12 April 2020. Seville, Spain. Pр. 1257–1262. URL: https://ibima.org/accepted-paper/managing-the-competitiveness-of-innovation-clusters.
33. Comberg C., Velamuri V. K. The introduction of a competing business model: the case of eBay. International Journal of Technology Management. 2017. Vol. 73. No. 1–3. Рр. 39–64. https://doi.org/10.1504/IJTM.2017.10003240.
34. Ren Y., Skibniewski M. J., Shaohua J. Building information modeling integrated with electronic commerce material procurement and supplier performance management system. Journal of Civil Engineering and Management. Vol. 18. No. 5. Рр. 642–654. https://doi.org/10.3846/13923730.2012.719835.
35. Prause L., Hackfort S., Lindgren M. Digitalization and the third food regime. Agriculture and Human Values. 2021. Vol. 38. Pp. 641–655. https://doi.org/10.1007/s10460-020-10161-2.
36. Monastyrnaya E., Yannou-Le Bris G., Yannou B., Petit G. A template for sustainable food value chains. International Food and Agribusiness Management Review. 2017. Vol. 20. No. 4. Рр. 461–476. https://doi.org/10.22434/IFAMR2015.0061.
37. Saban Kumar K. C., Arun Kumar Timalsina P. A case study on agro-based e-commerce portal. International Journal of Environment Agriculture and Biotechnology. 2018. Vol. 3. No. 1. Рр. 213–216. https://doi.org/10.22161/ijeab/3.1.27.
38. Soros G. The Alchemy of Finance; 2nd ed. Wiley, 2015. 416 p.
39. Kucher L., Knіaz S., Pavlenko O., Holovina O., Shayda O., Franiv I., Dzvonyk V. Development of entrepreneurial initiatives in agricultural business: a methodological approach. European Journal of Sustainable Development. 2021. Vol. 10. No. 2. Рp. 321–335. https://doi.org/10.14207/ejsd.2021.v10n2p321.
References
1. Cabinet of Ministers of Ukraine (2015). Resolution of the Cabinet of Ministers of Ukraine «On approval of the Concept of the State target program for the development of the agricultural sector of the economy until 2022». Available at: https://zakon.rada.gov.ua/laws/show/1437-2015-%D1%80#Text.
2. Koleshchuk, O. Ya. (2019). Intellectualization of the conceptual-strategic thinking in the management of a machine-building enterprise. Business Inform, 11, 367–381. https://doi.org/10.32983/2222-4459-2019-11-376-381.
3. Prorok, B. (2016). Theory of chaos and network theory – new approaches to modeling political system. PolitBook, 1, 83–91. Available at: https://cyberleninka.ru/article/n/teoriya-haosa-i-teoriya-setey-novye-podhody-k-modelirovaniyu-politicheskoy-sistemy/viewer.
4. Hayward, T., & Preston, J. (1999). Chaos theory, economics and information: The implications for strategic decision-making. Journal of Information Science, 25(3), 173–182. https://doi.org/10.1177/016555159902500301.
5. Faggini, M., & Parziale, A. (2012). The failure of economic theory. Lessons from chaos theory. Modern Economy, 3(1), 1–10. https://doi.org/10.4236/me.2012.31001.
6. Xia, Lu. (2020). A financial chaotic system control method based on intermittent controller. Mathematical Problems in Engineering, 2020, 5810707. https://doi.org/10.1155/2020/5810707.
7. Zhou, W., Chu, T., & Wang, X.-X. (2021). Stability, global dynamics, and social welfare of a two-stage game under R&D spillovers. Mathematical Problems in Engineering, 2021, 2096868. https://doi.org/10.1155/2021/2096868.
8. Kernasiuk, Ju. V. (2019). Forecast of development of agrarian sector of economy with the use of artificial neural nets. Bulletin of Agricultural Science, 6, 75–81. https://doi.org/10.31073/agrovisnyk201906-11.
9. Viedienieiev, V. (2019). Effectiveness evaluation of the long-term forecasting models of the agricultural sector products` sales prices in Ukraine. Ekonomika ta derzhava, 9, 46–51. https://doi.org/10.32702/2306-6806.2019.9.46.
10. Mykhailenko, O., & Khilchenko, I. (2019). Agricultural sector of Ukraine: the modern state, problems and prospects of reform in the field. Modern Economics, 15, 148–152. https://doi.org/10.31521/modecon.V15(2019)-21.
11. Kozlovskyi, S., Khadzhynov, I., Lavrov, R., Skydan, O., Ivanyuta, N., & Varshavska, N. (2019). Economic-mathematical modeling and forecasting of competitiveness level of agricultural sector of Ukraine by means of theory of fuzzy sets under conditions of integration into European market. International Journal of Recent Technology and Engineering, 8(4), 5316–5323. https://doi.org/10.35940/ijrte.D7541.118419.
12. Akullo, D., Maat, H., & Wals, A. E. J. (2019). An institutional diagnostics of agricultural innovation; public-private partnerships and smallholder production in Uganda. NJAS: Wageningen Journal of Life Sciences, 84(1), 6–12. https://doi.org/10.1016/j.njas.2017.10.006.
13. Kniaz, S. V. (Ed.) (2020). Formvannia zbalansovanoi systemy otsiniuvannia pidpryiemstv rynku kharchovoi produktsii na osnovi standartu NASSR [Formation of a balanced system of evaluation of food market enterprises on the basis of the HACCP standard], Lviv, Vydavnycha firma «Afisha».
14. Maknickienė, N., Stankevičienė, J. & Maknickas, A. (2020). Comparison of Forex market forecasting tools based on Evolino ensemble and technical analysis indicators. Romanian Journal of Economic Forecasting, 23(3), 134–148. Available at: https://ipe.ro/rjef/rjef3_20/rjef3_2020p134-148.pdf.
15. Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.
16. May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261, 459–467. https://doi.org/10.1038/261459a0.
17. Zhang, W.-B. (1991). Synergetic Economics. Time and Change in Nonlinear Economics. Berlin, Heidelberg, Springer. https://doi.org/10.1007/978-3-642-75909-3.
18. Bacaër, N. (2011). Verhulst and the logistic equation (1838). In A Short History of Mathematical Population Dynamics. London. Springer. https://doi.org/10.1007/978-0-85729-115-8_6.
19. Rosenberg, G. S. (2006). To the history of the logistics growth model. Bulletin Samarskaya Luka, 18, 188–193.
20. Bazykin, A. D. (2003). Nelyneinaia dynamyka vzaymodeistvuiushchykh populiatsyi [Nonlinear dynamics of interacting populations]. Moscow-Izhevsk, Institute of Computer Research.
21. Shcherbinina, S., Mikhailenko, A., & Sviridenko, V. (2020). Study of the level of development of economic potential of enterprise. Efektyvna ekonomika, 1. https://doi.org/10.32702/2307-2105-2020.1.85.
22. Muzychenko, M. V. (2017). Use of the Verhulst logistic function as a desirability function to normalize the natural gas supply security indicators. Economy and Society, 9, 83–88. Available at: https://economyandsociety.in.ua/journals/9_ukr/13.pdf.
23. Moloney, N. R., & Dickman, R. (2006). Functional-integral based perturbation theory for the Malthus-Verhulst process. Brazilian Journal of Physics, 36(4A), 1238–1249. https://doi.org/10.1590/S0103-97332006000700022.
24. Sbardella, A., Pugliese, E., Zaccaria, A., & Scaramozzino, P. (2018). The role of complex analysis in modelling economic growth. Entropy, 20(11), 883. https://doi.org/10.3390/e20110883.
25. Halbert, L. (2007). From sectors to functions: producer services, metropolisation and agglomeration forces in the Ile-de-France region. Belgeo, 1, 73–94. https://doi.org/10.4000/belgeo.11817.
26. Farat, O., & Lyvdar, M. (2019). Elaboration of technology for implementing of organizational solutions on the innovative clusters development. Baltic Journal of Economic Studies, 5(3), 207–212. https://doi.org/10.30525/2256-0742/2019-5-3-207-212.
27. Audretsch, D. B., & Feldman, M. P. (1996). Innovative clusters and the industry life cycle. Review of Industrial Organization, 11(2), 253–273. https://doi.org/10.1007/BF00157670.
28. Galvin, P. (2019). Local government, multilevel governance, and cluster-based innovation policy: economic cluster strategies in Canada’s city regions. Canadian Public Administration, 62(1), 122–150. https://doi.org/10.1111/capa.12314.
29. Johansen, F. R., Kerndrup, S., Andersson, G., & Rubach, S. (2020). A view of clustering as emergent and innovative processes. Industry and Innovation, 27(4), 390–460. https://doi.org/10.1080/13662716.2020.1718618.
30. Wardhana, D., Ihle, R., & Heijman, W. (2017). Agro-clusters and rural poverty: a spatial perspective for West Java. Bulletin of Indonesian Economic Studies, 53(2), 161–186. https://doi.org/10.1080/00074918.2017.1298722.
31. Berdiyev, A. H., & Dustova, M. K. (2020). Advantages of introducing agrocluster in agriculture. International Journal on Orange Technologies, 2(11), 37–40. https://doi.org/10.31149/ijot.v2i11.860.
32. Kniaz, S., Farat, O., Merezhko, N., Kozhushko, L., Skrynkovskyy, R., Moroz, S., Kalashnyk, O. … Тurenko, Y. (2020). Managing the competitiveness of innovation clusters. 35th International Business Information Management Association (IBIMA). Seville. Available at: https://ibima.org/accepted-paper/managing-the-competitiveness-of-innovation-clusters.
33. Comberg, C., & Velamuri, V. K. (2017). The introduction of a competing business model: the case of eBay. International Journal of Technology Management, 73(1–3), 39–64. https://doi.org/10.1504/IJTM.2017.10003240.
34. Ren, Y., Skibniewski, M. J. & Shaohua, J. (2012). Building information modeling integrated with electronic commerce material procurement and supplier performance management system. Journal of Civil Engineering and Management, 18, 5, 642–654. https://doi.org/10.3846/13923730.2012.719835.
35. Prause, L., Hackfort, S. & Lindgren, M. (2021). Digitalization and the third food regime. Agriculture and Human Values, 38, 641–655. https://doi.org/10.1007/s10460-020-10161-2.
36. Monastyrnaya, E., Yannou-Le Bris, G., Yannou, B., & Petit, G. (2017). A template for sustainable food value chains. International Food and Agribusiness Management Review, 20(4), 461–476. https://doi.org/10.22434/IFAMR2015.0061.
37. Saban Kumar, K. C., & Arun Kumar Timalsina, P. (2018). A case study on agro-based e-commerce portal. International Journal of Environment Agriculture and Biotechnology, 3(1), 213–216. https://doi.org/10.22161/ijeab/3.1.27.
38. Soros, G. (2015). The Alchemy of Finance (2nd ed.). New York, Wiley.
39. Kucher, L., Knіaz, S., Pavlenko, O., Holovina, O., Shayda, O., Franiv, I. & Dzvonyk, V. (2021). Development of entrepreneurial initiatives in agricultural business: a methodological approach. European Journal of Sustainable Development, 10(2), 321–335. https://doi.org/10.14207/ejsd.2021.v10n2p321.