Forecasting agricultural commodity price using different models: a case study of widely consumed grains in Nigeria

Authors

DOI:

https://doi.org/10.51599/are.2022.08.02.07

Keywords:

grains, agriculture, forecasting, hybrid model, Nigeria.

Abstract

Purpose. This study highlights the specific and accurate methods for forecasting prices of commonly consumed grains or legumes in Nigeria based on data from January 2017 to June 2020.

Methodology / approach. Different models that include autoregressive integrated moving average (ARIMA), artificial neural networks (ANN), seasonal decomposition of time series by loess method (STLM), and a combination of these three models (hybrid model) were proposed to forecast the sample grain price data. This study uses price data on widely consumed grains, such as white maize, local rice, imported rice, and white beans, in Nigeria from January 2017 to June 2020.

Results. Our result indicates that ARIMA is the best applicable model for white maize and imported rice because it is well fitted to stationary data, as demonstrated in the sample period. The STLM is more appropriate in forecasting white beans. As white beans are highly seasonal in Nigeria, it further explains why the STLM model fits better in forecasting prices. The production of local rice is inconsistent in Nigeria because of erratic rainfall and stiff competition from the importation of rice from other countries. Therefore, and consistent with the analysis, the hybrid model is the best model applicable to local rice because it captures varying trends exhibited in the data.

Originality / scientific novelty. This study suggests most accurate forecasting techniques for specific agricultural commodities in sub-Saharan African countries. It considers forecasting prices of commonly consumed grains and legumes in Nigeria and traded worldwide, such as imported rice, local rice, beans, and maize.

Practical value / implications. The study highlights the importance of appropriate forecasts for policymakers, producers, and consumers to enhance better decision making and serve as an underlying incentive to guide the allocation of financial resources to the agricultural sector, which determines the structure and degree of sectoral growth.

References

1. Ackello-Ogutu, C. (2011). Managing food security implications of food price shocks in Africa. Journal of African Economies, 20(1), i100–i141. https://doi.org/10.1093/jae/ejr010.
2. Akande, T. (2003). The rice sector in Nigeria, United Nation Crop Project (UNCP) Country Agricultural Project on trade liberalization in agricultural sector and the environment. African crop science journal, 15(4), 223–235. Available at: http://www.ifmaonline.org/pdf/congress/07Umeh&Ataborh.pdf.
3. Akintunde, O. K., Akinremi, T. B., & Nwauwa, L. O. E. (2012). Food grain marketing in Osun State, Nigeria: a study of long-run price integration. Continental journal of agricultural economics, 6(1), 1–9. https://doi.org/10.5707/cjae.2012.6.1.1.9.
4. Alene, A., & Manyong, V. (2006). Endogenous technology adoption and household food security: the case of improved cowpea varieties in northern Nigeria. Quarterly Journal of International Agriculture, 45(3), 211–230. Available at: https://hdl.handle.net/10568/91759.
5. Antonaci, L., Demeke, M., & Vezzani, A. (2014). The challenges of managing agricultural price and production risks in sub-Saharan Africa. ESA Working Paper No. 14-09. Rome, FAO. https://doi.org/10.22004/ag.econ.288979.
6. Araujo, C., Araujo-Bonjean, C., & Brunelin, S. (2012). Alert at Maradi: preventing food crises by using price signals. World Development, 40(9), 1882–1894. https://doi.org/10.1016/j.worlddev.2012.04.018.
7. Badmus, M. A., & Ariyo, O. S. (2011). Forecasting cultivated areas and production of maize in Nigerian using Arima Model. Asian Journal of Agricultural Sciences, 3(3), 171–176. Available at: https://maxwellsci.com/print/ajas/v3-171-176.pdf.
8. Boukar, O., Massawe, F., Muranaka, S., Franco, J., Maziya-Dixon, B., Singh, B., & Fatokun, C. (2011). Evaluation of cowpea germplasm lines for protein & mineral concentrations in grains. Plant Genetic Resources, 9(4), 515–522. https://doi.org/10.1017/S1479262111000815.
9. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. Hoboken, John Wiley & Sons.
10. Chen, Y., & Rogoff, K. S., & Rossi, B. (2010). Can exchange rates forecast commodity prices? Quarterly Journal of Economics, 125(3), 1145–1194. https://doi.org/10.1162/qjec.2010.125.3.1145.
11. Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: seasonal-trend decomposition. Journal of Official Statistics, 6(1), 3–73. Available at: https://www.wessa.net/download/stl.pdf.
12. Dorosh, P., & Haggblade, S. (2003). Growth linkages, price effects and income distribution in Sub‐Saharan Africa. Journal of African Economies, 12(2), 207–235. https://doi.org/10.1093/jae/12.2.207.
13. Ebuehi, O. A. T., & Oyewole, A. C. (2007). Effect of cooking and soaking on physical characteristics, nutrient composition and sensory evaluation of indigenous and foreign rice varieties in Nigeria. African Journal of Biotechnology, 6(8), 1016–1020. Available at: https://scirp.org/reference/referencespapers.aspx?referenceid=2104917.
14. Ferrara, L., Karadimitropoulou, A., & Triantafyllou, A. (2022). Commodity price uncertainty comovement: does it matter for global economic growth? Available at: https://www.bundesbank.de/resource/blob/624356/68adedd2d53283e808f0a5563a218764/mL/2022-02-25-ferrara-data.pdf.
15. Gogas, P., Papadimitriou, T., & Sofianos, E. (2022). Forecasting unemployment in the euro area with machine learning. Journal of Forecasting, 41(3), 551–566. https://doi.org/10.1002/for.2824.
16. Higgins, N., Hintermann, B., & Brown, M. E. (2015). A model of west african millet prices in rural markets. Food Policy, 52, 33–43. https://doi.org/10.1016/j.foodpol.2014.09.011.
17. Huang, W., Huang, Z., Matei, M., & Wang, T. (2012). Price volatility forecast for agricultural commodity futures: the role of high frequency data. Romanian Journal of Economic Forecasting, 15(4), 83–103. Available at: https://ipe.ro/rjef/rjef4_12/rjef4_2012p83-103.pdf.
18. Huang, J., & Yang, G. (2017). Understanding recent challenges and new food policy in China. Global Food Security, 12, 119–126. https://doi.org/10.1016/j.gfs.2016.10.002.
19. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001.
20. Joshua, T., Zalkuwi, J., & Audu, M. M. (2019). Analysis of cost and return in cowpea production: a case study Mubi south local government area of Adamawa State, Nigeria. Agricultural Science and Technology, 11(2), 144–147. https://doi.org/10.15547/ast.2019.02.023.
21. Kamara, A. Y., Ellis-Jones, J., Ekeleme, F., Omoigui, L., Amaza, P., Chikoye, D. & Dugje, I. Y. (2010). A participatory evaluation of improved cowpea cultivars in the Guinea and Sudan savanna zones of North East Nigeria. Archives of Agronomy and Soil Science, 56(3), 355–370. https://doi.org/10.1080/03650340903099692.
22. Khedr, A. M., Arif, I., Raj, P., El‐Bannany, M., Alhashmi, S. M., & Sreedharan, M. (2021). Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: a survey. Intelligent Systems in Accounting, Finance and Management, 28(1), 3–34. https://doi.org/10.1002/isaf.1488.
23. Kitenge, E. M., & Morshed, A. M. (2019). Price convergence among Indian cities: the role of linguistic differences, topography, and aggregation. Journal of Asian Economics, 61, 34–50. https://doi.org/10.1016/j.asieco.2019.02.002.
24. Li, R., & Leung, G. C. (2021). The relationship between energy prices, economic growth and renewable energy consumption: evidence from Europe. Energy Reports, 7, 1712–1719. https://doi.org/10.1016/j.egyr.2021.03.030.
25. Lowder, S. K., Skoet, J., & Raney, T. (2016). The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Development, 87, 16–29. https://doi.org/10.1016/j.worlddev.2015.10.041.
26. Manda, J., Alene, A. D., Tufa, A. H., Abdoulaye, T., Kamara, A. Y., Olufajo, O., ... & Manyong, V. M. (2020). Adoption and ex‐post impacts of improved cowpea varieties on productivity and net returns in Nigeria. Journal of Agricultural Economics, 71(1), 165–183. https://doi.org/10.1111/1477-9552.12331.
27. Mishili, F. J., Fulton, J., Shehu, M., Kushwaha, S., Marfo, K., Jamal, M. … & Lowenberg-DeBoer, J. (2009). Consumer preferences for quality characteristics along the cowpea value chain in Nigeria, Ghana, and Mali. Agribusiness, 25(1), 16–35. https://doi.org/10.1002/agr.20184.
28. Martín-Rodríguez, G., & Cáceres-Hernández, J. J. (2012). Forecasting pseudo‐periodic seasonal patterns in agricultural prices. Agricultural Economics, 43(5), 531–544. https://doi.org/10.1111/j.1574-0862.2012.00601.x.
29. McNerney, J., Savoie, C., Caravelli, F., Carvalho, V. M., & Farmer, J. D. (2022). How production networks amplify economic growth. Proceedings of the National Academy of Sciences, 119(1), e2106031118. https://doi.org/10.1073/pnas.2106031118.
30. Odior, E. S. (2014). The macroeconomic policy effect on Nigerian agricultural performance: one-step dynamic forecasting analysis. International Journal of Economics and Finance, 6(9), 190–198. https://doi.org/10.5539/ijef.v6n9p190.
31. OECD/Food and Agriculture Organization of the United Nations (2016). Agriculture in Sub-Saharan Africa: prospects and challenges for the next decade. OECD-FAO Agricultural Outlook 2016-2025, OECD Publishing, Paris. https://doi.org/10.1787/agr_outlook-2016-5-en.
32. Pattnaik, I., Lahiri-Dutt, K., Lockie, S., & Pritchard, B. (2018). The feminization of agriculture or the feminization of agrarian distress? Tracking the trajectory of women in agriculture in India. Journal of the Asia Pacific Economy, 23(1), 138–155. https://doi.org/10.1080/13547860.2017.1394569.
33. Pei, S., & Li, Y. (2019). Wind turbine power curve modeling with a hybrid machine learning technique. Applied Sciences, 9(22), 4930. https://doi.org/10.3390/app9224930.
34. Rashid, S., & Jayne, T. S. (2010). Risks management in African agriculture: a review of experiences. Paper presented at African agricultural markets programme’s seminar – agricultural risks management in Africa: taking stock of what has and hasn’t worked. Available at: http://aec.msu.edu/fs2/aamp/index.htm.
35. Sabu, K. M., & Kumar, T. M. (2020). Predictive analytics in agriculture: forecasting prices of arecanuts in Kerala. Procedia Computer Science, 171, 699–708. https://doi.org/10.1016/j.procs.2020.04.076.
36. Safi, S. K., & White, A. K. (2017). Short and long-term forecasting using artificial neural networks for stock prices in Palestine: a comparative study. Electronic Journal of Applied Statistical Analysis, 10: 14–28.‏ https://doi.org/10.1285/i20705948v10n1p14.
37. Sanusi, O. I. (2018). The role of supply shocks and information dissemination on price dispersion in Nigeria. Southern Illinois University at Carbondale. Available at: https://opensiuc.lib.siu.edu/dissertations/1599.
38. Sriboonchitta, S., Nguyen, H. T., Wiboonpongse, A., & Liu, J. (2013). Modeling volatility and dependency of agricultural price and production indices of Thailand: static versus time-varying copulas. International Journal of Approximate Reasoning, 54(6), 793–808. https://doi.org/10.1016/j.ijar.2013.01.004.
39. Schnepf, R. (2016). US international food aid programs: background and issues, vol. 9. Washington DC, Congressional Research Service. Available at: https://sgp.fas.org/crs/misc/R41072.pdf.
40. Taylor, M. R., Dhuyvetter, K. C., & Kastens, T. L. (2006). forecasting crop basis using historical averages supplemented with current market information. Journal of Agricultural and Resource Economics, 31(3), 549–567. https://www.jstor.org/stable/40987335.
41. Tule, M. K., Salisu, A. A., & Chiemeke, C. C. (2019). Can agricultural commodity prices predict Nigeria’s inflation? Journal of Commodity Markets, 16, 100087. https://doi.org/10.1016/j.jcomm.2019.02.002.
42. Tomek, W. G., & Kaiser, H. M. (2014). Agricultural product prices. In Agricultural Product Prices, 5th ed. Cornell University Press.
43. United States Agency for International Development (USAID) and Maximizing Agricultural Revenues and Key Enterprises in Targeted sites (MARKETS) (2010). Package of Practices for Maize Production in Nigeria. Available at: https://data.nal.usda.gov/dataset/usda-foreign-agricultural-service-production-supply-and-distribution-database.
44. USDA Foreign Agricultural Service (2018). USDA foreign agricultural service production, supply, and distribution database. Foreign Agricultural Service, Department of Agriculture. Available at: https://data.nal.usda.gov/dataset/usda-foreign-agricultural-service-production-supply-and-distribution-database.
45. Vågsholm, I., Arzoomand, N. S., & Boqvist, S. (2020). Food security, safety, and sustainability – getting the trade-offs right. Frontiers in Sustainable Food Systems, 4, 16. https://doi.org/10.3389/fsufs.2020.00016.
46. Van Wyk, R. B., & Dlamini, C. S. (2018). The impact of food prices on the welfare of households in South Africa. South African Journal of Economic and Management Sciences, 21(1), a1979. https://doi.org/10.4102/sajems.v21i1.1979.
47. Walker, T., Alene, A., Ndjeunga, J., Labarta, R., Yigezu, Y., Diagne, A., ... & Pandey, S. (2014). Measuring the effectiveness of crop improvement research in sub-Saharan Africa from the perspectives of varietal output, adoption, and change: 20 crops, 30 countries, and 1150 cultivars in farmers’ fields. Synthesis Report for Objectives 1 and 2 of Bill & Melinda Gates Foundation’s Diffusion and Impact of Improved Varieties in Africa (DIIVA) Project.
48. Wang, J., Wang, Z., Li, X., & Zhou, H. (2022). Artificial bee colony-based combination approach to forecasting agricultural commodity prices. International Journal of Forecasting, 38(1), 21–34. https://doi.org/10.1016/j.ijforecast.2019.08.006.
49. White, A. & Safi, S. K. (2016). The efficiency of artificial neural networks for forecasting in the presence of autocorrelated disturbances. International Journal of Statistics and Probability, 5(2), 51–58. https://doi.org/10.5539/ijsp.v5n2p51.
50. World Bank (2019), World Development Indicators. Available at: http://data.worldbank.org/data-catalog/world-development-indicators.
51. Xu, J. L., & Hsu, Y. L. (2022). The impact of news sentiment indicators on agricultural product prices. Computational Economics, 59(4), 1645–1657. https://doi.org/10.1007/s10614-021-10189-4.
52. Yeboah, K., & Jayne, T. S. (2015). Employment Trends in Sub-Saharan Africa: The Evolving Role of Agriculture. International Development Working Paper, Michigan State University, East Lan Gss-2009.
53. Zakari, S., Ying, L., & Province, H. (2012). Forecasting of Niger grain production & harvested area. Asian Journal of Agricultural Sciences, 4(4), 308–313. Available at: https://maxwellsci.com/print/ajas/v4-308-313.pdf.
54. Zhang, D., Chen, S., Liwen, L., & Xia, Q. (2020). Forecasting agricultural commodity prices using model selection framework with time series features and forecast horizons. IEEE Access, 8, 28197–28209. https://doi.org/10.1109/ACCESS.2020.2971591.

Downloads

Published

2022-06-20

How to Cite

Sanusi, O. I., Safi, S. K., Adeeko, O., & Tabash, M. I. (2022). Forecasting agricultural commodity price using different models: a case study of widely consumed grains in Nigeria. Agricultural and Resource Economics: International Scientific E-Journal, 8(2), 124–140. https://doi.org/10.51599/are.2022.08.02.07

Issue

Section

Articles