Economic evaluation of the consequences of soil pollution in the system of sustainable land management


Keywords: agricultural sector, soil pollution, economic reserves, economic losses, land monetary value, sustainable soil management.

Abstract

Purpose. The purpose of this paper is to highlight the results of the economic evaluation of the consequences of soil pollution with heavy metals (on the example of mobile forms of lead and cadmium) in the system of sustainable land management in the agricultural sector of Ukraine.

Methodology / approach. The study used the following methods: bibliometric, cluster, graphical (to determine the state of research on soil pollution in the world based on the Scopus database and visual presentation of the results); grouping (to determine the influence of indicators by the share of contamination of the area of agricultural land with mobile forms of lead and cadmium on the efficiency of land use); econometric modeling (for the construction of stochastic models of the impact of soil pollution with heavy metals on the normative monetary value of arable land and the efficiency of land use (estimated by the production of gross agricultural products, including crop production per 1 ha of agricultural land) in the context of regions of Ukraine); monographic and abstract-logical (to summarize the results of the study). The information base is data on soil pollution on agricultural land in the regions of Ukraine based on the results of the X round of agrochemical survey of land and data from the State Statistics Service of Ukraine. Data on publication activity were processed using the “VOSviewer” program, construction and statistical evaluation of econometric models was carried out using the STATISTICA program and the R programming language.

Results. Econometric modeling of economic reserves and assessment of the consequences (losses) of soil contamination with heavy metals (using the example of mobile forms of lead and cadmium) in the regions of Ukraine was carried out, which made it possible to develop 14 stochastic models. It is established that the reduction of lead contamination of the soils of Ukraine to acceptable norms will allow increasing the normative monetary value of arable land by 3.2 % from the average level, and the reserve for increasing the gross agricultural products and crop production in constant prices of 2016 per 1 ha of agricultural land is 23.4 and 20.9 %, respectively. In the case of overcoming cadmium pollution, the expected increase in the normative monetary value of arable land is 5.7 %, and the reserve of gross production of agriculture and crop production per 1 ha of agricultural land is 27.6 and 21.2 %, respectively.

Originality / scientific novelty. For the first time, econometric models were developed, which made it possible to carry out a quantitative assessment of the impact of soil contamination with mobile forms of lead and cadmium on the formation of the efficiency of land use and the normative monetary assessment of arable land. The provision on the formation of a system of sustainable land management in the agricultural sector was further developed, taking into account the results of the economic assessment of the consequences of soil pollution. This study fills the gaps identified as a result of bibliometric and cluster analysis, and also contributes to a better understanding of the economic reserves of sustainable land management in the agricultural sector of Ukraine.

Practical value / implications. The key results of the research can be used for (i) improvement of the soil protection policy of the state in terms of sustainable management of contaminated soils in the agricultural sector; (ii) assessment and forecasting of the impact of soil pollution with heavy metals on the efficiency of land use at the regional level; (iii) evaluation of the efficiency of remediation of soils contaminated with heavy metals at the macro level, taking into account the prevention/minimization of possible losses.

References

Global Assessment of Soil Pollution: report. Rome: FAO, UNEP, 2021. 846 p. https://doi.org/10.4060/cb4894en.

Eugenio N. R., Montanarella L., McLaughlin M., Vargas R. Environment Pollution journal – Special Issue: global status of soil pollution. Environmental Pollution. 2020. 115231. https://doi.org/10.1016/j.envpol.2020.115231.

Abd-Elmabod S. K., Ali R. R., Anaya-Romero M., De La Rosa D. Evaluating soil contamination risks by using MicroLEIS DSS in EI-Fayoum province, Egypt. 2010 2nd International Conference on Chemical, Biological and Environmental Engineering: Paper presented at the ICBEE 2010, (Cairo, 2–4 November 2010). Cairo: IEEE, 2010. Pp. 1–5. https://doi.org/10.1109/ICBEE.2010.5651591.

Fetanat A., Tayebi M. Sustainability prioritization of technologies for cleaning up soils polluted with oil and petroleum products: a decision support system under complex spherical fuzzy environment. Chemosphere. 2022. Vol. 308. Part 3. 136328. https://doi.org/10.1016/j.chemosphere.2022.136328.

Garcia-Franco N., Albaladejo J., Almagro M., Martínez-Mena M. Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem. Soil and Tillage Research. 2015. Vol. 153. Pp. 66–75. https://doi.org/10.1016/j.still.2015.05.010.

Hou D., Al-Tabbaa A. Sustainability: a new imperative in contaminated land remediation. Environmental Science and Policy. 2014. Vol. 39. Pp. 25–34. https://doi.org/10.1016/j.envsci.2014.02.003.

Jacquet J., Benizri E., Echevarria G., Sirguey C. New insights on glass industry wasteland ecosystems. Environmental Pollution. 2022. Vol. 315. 120431. https://doi.org/10.1016/j.envpol.2022.120431.

Latawiec A. E., Reid B. J. Beyond contaminated land assessment: on costs and benefits of bioaccessibility prediction. Environment International. 2009. Vol. 35. Is. 6. Pp. 911–919. https://doi.org/10.1016/j.envint.2009.03.011.

Latawiec A. E., Swindell A. L., Simmons P., Reid B. J. Bringing bioavailability into contaminated land decision making: the way forward? Critical Reviews in Environmental Science and Technology. 2011. Vol. 41. Is. 1. Pp. 52–77. https://doi.org/10.1080/00102200802641780.

Li C., Zhang C., Yu T., Liu X. et al. Annual net input fluxes of cadmium in paddy soils in karst and non-karst areas of Guangxi, China. Journal of Geochemical Exploration. 2022. Vol. 241. 107072. https://doi.org/10.1016/j.gexplo.2022.107072.

Scaccabarozzi D., Castillo L., Aromatisi A., Milne L. et al. Soil, site, and management factors affecting cadmium concentrations in cacao-growing soils. Agronomy. 2020. Vol. 10. Is. 6. 806. https://doi.org/10.3390/agronomy10060806.

Adedeji O. H., Olayinka O. O., Tope-Ajayi O. O. Spatial distribution and health risk assessment of soil pollution by heavy metals in Ijebu-Ode, Nigeria. Journal of Health & Pollution. 2019. Vol. 9. Is. 22. 190601. https://doi.org/10.5696/2156-9614-9.22.190601.

Peeters L., Schreurs E., Van Passel S. Heterogeneous impact of soil contamination on farmland prices in the Belgian Campine region: evidence from unconditional quantile regressions. Environmental and Resource Economics. 2017. Vol. 66. Is. 1. Pp. 135–168. https://doi.org/10.1007/s10640-015-9945-6.

Tkachuk O., Verhelis V. Intensity of soil pollution by toxic substances depending on the degree of its washout. Scientific Horizons. 2021. Vol. 24. No. 3. Pp. 52–57. https://doi.org/10.48077/scihor.24(3).2021.52-57.

Zhan J., Twardowska I., Wang S., Wei S. et al. Prospective sustainable production of safe food for growing population based on the soybean (glycine max L. merr.) crops under cd soil contamination stress. Journal of Cleaner Production. 2019. Vol. 212. Pp. 22–36. https://doi.org/10.1016/j.jclepro.2018.11.287.

Martinho V. J. P. D. Exploring the topics of soil pollution and agricultural economics: highlighting good practices. Agriculture. 2020. Vol. 10. No. 1. 24. https://doi.org/10.3390/agriculture10010024.

Самохвалова В. Л., Мандрика О. В., Фатєєв А. І. Закордонний досвід еколого-економічної оцінки забруднених ґрунтів земельних ділянок. Раціональне використання ґрунтових ресурсів і відтворення родючості ґрунтів: організаційно-економічні, екологічні й нормативно-правові аспекти: кол. моногр.; за ред. акад. НААН С. А. Балюка, чл.-кор. АЕНУ А. В. Кучера. Харків: Смугаста типографія, 2015. С. 404–418.

Фатєєв А. І., Самохвалова В. Л. Концепція використання техногенно забруднених ґрунтів. Харків: Стильна типографія, 2018. 57 с.

Dmytruk Y., Cherlinka V. Cartographic technique for determining areas of soil contamination by heavy metals. International Journal of Environmental Studies. 2022. https://doi.org/10.1080/00207233.2022.2147708.

Semenov D. O., Fatjejev A. I., Smirnova K. B., Shemet A. M. et al. Geochemical and anthropogenic factors of variability of heavy metals content in the soils and crops of Ukraine at the example of copper. Environmental Monitoring and Assessment. 2019. Vol. 191. 527. https://doi.org/10.1007/s10661-019-7622-x.

Vakal S. V., Yanovska A. O., Vakal V. S., Artyukhov A. Y. et al. Minimization of soil pollution as a result of the use of encapsulated mineral fertilizers. Journal of Ecological Engineering. 2021. Vol. 22. Is. 1. Pp. 221–230. https://doi.org/10.12911/22998993/128965.

Eugenio N. R., Naidu R., Colombo C. M. Global approaches to assessing, monitoring, mapping, and remedying soil pollution. Environmental Monitoring and Assessment. 2020. Vol. 192. 601. https://doi.org/10.1007/s10661-020-08537-2.

Kucher A. Sustainable soil management in the formation of competitiveness of agricultural enterprises: monograph. Plovdiv: Academic Publishing House «Talent», 2019. 444 p. https://doi.org/10.13140/RG.2.2.19554.07366.

Кучер А. В., Улько Є. М., Анісімова О. В. Науково-методологічні засади визначення економічної ефективності застосування інновацій у сфері охорони й раціонального використання ґрунтових ресурсів: моногр.; за ред. чл.-кор. АЕНУ А.В. Кучера. Харків: ФОП Бровін О.В., 2021. 312 с. https://doi.org/10.13140/RG.2.2.34421.29920.

Кучер А. Методика оцінювання збитків, завданих збройною агресією земельному фонду та ґрунтам: проблеми та напрями вдосконалення. Journal of Innovations and Sustainability. 2022. Vol. 6. No. 2. 10. https://doi.org/10.51599/is.2022.06.02.10.

Наукові дослідження з моніторингу та обстеження сільськогосподарських угідь України за результатами Х туру (2011–2015 рр.); За ред. І. П. Яцука. Київ: ДУ «Інститут охорони ґрунтів України», 2018. 64 с.

Періодична доповідь про стан ґрунтів на землях сільськогосподарського призначення України за результатами Х туру (2011–2015 рр.) агрохімічного обстеження земель; за ред. І. П. Яцука. Київ: ДУ «Інститут охорони ґрунтів України», 2020. 208 с.

Рослинництво України за 2019 рік: стат. збірник; за ред. О. Прокопенка. Київ: Державна служба статистики України, 2020. 183 с. URL: https://ukrstat.gov.ua/druk/publicat/kat_u/2020/zb/04/zb_rosl_2019.pdf.

Сільське господарство України за 2019 рік: стат. щорічник; за ред. О. Прокопенка. Київ: Державна служба статистики України, 2020. 230 с. URL: https://ukrstat.gov.ua/druk/publicat/kat_u/2020/zb/09/zb_sg_Ukr_2019.pdf.

Статистичний щорічник України за 2019 рік; за ред. І. Є. Вернера. Київ: Державна служба статистики України, 2020. 465 с. URL: http://www.ukrstat.gov.ua/druk/publicat/kat_u/2020/zb/11/zb_yearbook_2019.pdf.

Витрати підприємств на виробництво продукції сільського господарства у 2019 році: стат. бюлетень. Київ: Державна служба статистики України, 2020. 17 с. URL: https://ukrstat.gov.ua/operativ/operativ2018/sg/vytr_na%20ver_sg_prod/arch_vytr_na%20ver_sg_prod_u.htm.

Реалізація продукції сільського господарства підприємствами та господарствами населення у 2019 році: стат. бюлетень. Київ: Державна служба статистики України, 2020. 43 с. URL: https://ukrstat.gov.ua/operativ/operativ2019/sg/rpsg/arh_rpsg2019_u.html.

Răuță C., Cârstea S. Prevenirea și combaterea poluării solului, București: editura Ceres, 1983. 238 p.

Khan S., Naushad M., Lima E. C., Zhang S. et al. Global soil pollution by toxic elements: current status and future perspectives on the risk assessment and remediation strategies – a review. Journal of Hazardous Materials. 2021. Vol. 417. 126039. https://doi.org/10.1016/j.jhazmat.2021.126039.

Bruulsema T. Managing nutrients to mitigate soil pollution. Environmental Pollution. 2018. Vol. 243. Pp. 1602–1605. https://doi.org/10.1016/j.envpol.2018.09.132.

Poderati G. Analysis of China’s legislation on soil contamination in the light of the realization of an ecological civilization. Ecocycles. 2022. Vol. 8. No. 1. Pp. 8–15. https://doi.org/10.19040/ecocycles.v8i1.215.

References

FAO & UNEP (2021). Global Assessment of Soil Pollution. Report. Rome. https://doi.org/10.4060/cb4894en.

Eugenio, N. R., Montanarella, L., McLaughlin, M., & Vargas, R. (2020). Environment Pollution journal – Special Issue: global status of soil pollution. Environmental Pollution, 115231. https://doi.org/10.1016/j.envpol.2020.115231.

Abd-Elmabod, S. K., Ali, R. R., Anaya-Romero, M., & De La Rosa, D. (2010). Evaluating soil contamination risks by using MicroLEIS DSS in EI-Fayoum province, Egypt. 2010 2nd International Conference on Chemical, Biological and Environmental Engineering. Cairo, IEEE. https://doi.org/10.1109/ICBEE.2010.5651591.

Fetanat, A., & Tayebi, M. (2022). Sustainability prioritization of technologies for cleaning up soils polluted with oil and petroleum products: a decision support system under complex spherical fuzzy environment. Chemosphere, 308, 3, 136328. https://doi.org/10.1016/j.chemosphere.2022.136328.

Garcia-Franco, N., Albaladejo, J., Almagro, M., & Martínez-Mena, M. (2015). Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem. Soil and Tillage Research, 153, 66–75. https://doi.org/10.1016/j.still.2015.05.010.

Hou, D., & Al-Tabbaa, A. (2014). Sustainability: a new imperative in contaminated land remediation. Environmental Science and Policy, 39, 25–34. https://doi.org/10.1016/j.envsci.2014.02.003.

Jacquet, J., Benizri, E., Echevarria, G., & Sirguey, C. (2022). New insights on glass industry wasteland ecosystems. Environmental Pollution, 315, 120431. https://doi.org/10.1016/j.envpol.2022.120431.

Latawiec, A. E., & Reid, B. J. (2009). Beyond contaminated land assessment: On costs and benefits of bioaccessibility prediction. Environment International, 35(6), 911–919. https://doi.org/10.1016/j.envint.2009.03.011.

Latawiec, A. E., Swindell, A. L., Simmons, P., & Reid, B. J. (2011). Bringing bioavailability into contaminated land decision making: the way forward? Critical Reviews in Environmental Science and Technology, 41(1), 52–77. https://doi.org/10.1080/00102200802641780.

Li, C., Zhang, C., Yu, T., Liu, X., Xia, X., Hou, Q., … & Wang, L. (2022). Annual net input fluxes of cadmium in paddy soils in karst and non-karst areas of Guangxi, China. Journal of Geochemical Exploration, 241, 107072. https://doi.org/10.1016/j.gexplo.2022.107072.

Scaccabarozzi, D., Castillo, L., Aromatisi, A., Milne, L., Búllon Castillo A., & Muñoz-Rojas, M. (2020). Soil, site, and management factors affecting cadmium concentrations in cacao-growing soils. Agronomy, 10(6), 806. https://doi.org/10.3390/agronomy10060806.

Adedeji, O. H., Olayinka, O. O., & Tope-Ajayi, O. O. (2019). Spatial distribution and health risk assessment of soil pollution by heavy metals in Ijebu-Ode, Nigeria. Journal of Health & Pollution, 9(22), 190601. https://doi.org/10.5696/2156-9614-9.22.190601.

Peeters, L., Schreurs, E., & Van Passel, S. (2017). Heterogeneous impact of soil contamination on farmland prices in the Belgian Campine region: evidence from unconditional quantile regressions. Environmental and Resource Economics, 66(1), 135–168. https://doi.org/10.1007/s10640-015-9945-6.

Tkachuk, O., & Verhelis, V. (2021). Intensity of soil pollution by toxic substances depending on the degree of its washout. Scientific Horizons, 24(3), 52–57. https://doi.org/10.48077/scihor.24(3).2021.52-57.

Zhan, J., Twardowska, I., Wang, S., Wei, S., Chen, Y., & Ljupco, M. (2019). Prospective sustainable production of safe food for growing population based on the soybean (glycine max L. merr.) crops under cd soil contamination stress. Journal of Cleaner Production, 212, 22–36. https://doi.org/10.1016/j.jclepro.2018.11.287.

Martinho, V. J. P. D. (2020). Exploring the topics of soil pollution and agricultural economics: highlighting good practices. Agriculture, 10(1), 24. https://doi.org/10.3390/agriculture10010024.

Samokhvalova, V. L., Mandrykа, A. V., & Fateev, A. І. (2015). Zakordonnyi dosvid ekoloho-ekonomichnoi otsinky zabrudnenykh gruntiv zemelnykh dilianok [Foreign experience of ecological and economic assessment of land contaminated soils]. In S. A. Baliuk, A. V. Kucher (Eds.), Rational use of soil resources and soil fertility restoration: organizational, economic, ecological and legal aspects. Kharkiv, Smuhasta typohrafiya.

Fateev, A. І., & Samokhvalova, V. L. (2018). Kontseptsiia vykorystannia tekhnohenno zabrudnenykh gruntiv [The concept of using technogenically polluted soils]. Kharkiv, Stylna typohrafiya.

Dmytruk, Y., & Cherlinka, V. (2022). Cartographic technique for determining areas of soil contamination by heavy metals. International Journal of Environmental Studies. https://doi.org/10.1080/00207233.2022.2147708.

Semenov, D. O., Fatjejev, A. I., Smirnova, K. B., Shemet, A. M., Lykova, О. А., Tyutyunnyk, N. V., & Pogromska, I. A. (2019). Geochemical and anthropogenic factors of variability of heavy metals content in the soils and crops of Ukraine at the example of copper. Environmental Monitoring and Assessment, 191, 527. https://doi.org/10.1007/s10661-019-7622-x.

Vakal, S. V., Yanovska, A. O., Vakal, V. S., Artyukhov, A. Y., Shkola, V. Y., Yarova, T. Y., & Malovanyy, M. S. (2021). Minimization of soil pollution as a result of the use of encapsulated mineral fertilizers. Journal of Ecological Engineering, 22(1), 221–230. https://doi.org/10.12911/22998993/128965.

Eugenio, N. R., Naidu, R., & Colombo, C. M. (2020). Global approaches to assessing, monitoring, mapping, and remedying soil pollution. Environmental Monitoring and Assessment, 192, 601. https://doi.org/10.1007/s10661-020-08537-2.

Kucher, A. (2019). Sustainable soil management in the formation of competitiveness of agricultural enterprises. Plovdiv, Academic Publishing House “Talent”. https://doi.org/10.13140/RG.2.2.19554.07366.

Kucher, A. V., Ulko, Ye. M. & Anisimova, O. V. (2021). Naukovo-metodolohichni zasady vyznachennia ekonomichnoi efektyvnosti zastosuvannia innovatsii u sferi okhorony y ratsionalnoho vykorystannia gruntovykh resursiv [Scientific and methodological bases for assessment the economic efficiency of the application of innovations in the sphere of conservation and rational use of soil resources]. Kharkiv, Publisher Brovin. https://doi.org/10.13140/RG.2.2.34421.29920.

Kucher, A. (2022). Methodology for assessing damages and losses caused by the armed aggression to the land fund and soils: problems and directions of improvement. Journal of Innovations and Sustainability, 6(2), 10. https://doi.org/10.51599/is.2022.06.02.10.

Yatsuk, I. P. (Ed.) (2018). Naukovi doslidzhennia z monitorynhu ta obstezhennia silskohospodarskykh uhid Ukrainy za rezultatamy Х turu (2011–2015 rr.) [Scientific studies on the monitoring and survey of agricultural lands of Ukraine according to the results of the X round (2011–2015)]. Kyiv, SI “Institute of soils protection of Ukraine”.

Yatsuk, I. P. (Ed.) (2020). Periodychna dopovid pro stan gruntiv na zemliakh silskohospodarskoho pryznachennia Ukrainy za rezultatamy Х turu (2011–2015 rr.) ahrokhimichnoho obstezhennia zemel [Periodic report on the condition of soils on the agricultural lands of Ukraine according to the results of the X round (2011–2015) of the agrochemical land survey]. Kyiv, SI “Institute of soils protection of Ukraine”.

State Statistics Service of Ukraine (2020). Crop production of Ukraine 2019. Available at: https://ukrstat.gov.ua/druk/publicat/kat_u/2020/zb/04/zb_rosl_2019.pdf.

State Statistics Service of Ukraine (2020). Agriculture of Ukraine. Available at: https://ukrstat.gov.ua/druk/publicat/kat_u/2020/zb/09/zb_sg_Ukr_2019.pdf.

State Statistics Service of Ukraine (2020). Statistical yearbook of Ukraine 2019. Available at: http://www.ukrstat.gov.ua/druk/publicat/kat_u/2020/zb/11/zb_yearbook_2019.pdf.

State Statistics Service of Ukraine (2020). Costs of agricultural production in enterprises in 2019. Available at: https://ukrstat.gov.ua/operativ/operativ2018/sg/vytr_na%20ver_sg_prod/arch_vytr_na%20ver_sg_prod_u.htm.

State Statistics Service of Ukraine (2020). Sale of agricultural products by enterprises and households in 2019. Available at: https://ukrstat.gov.ua/operativ/operativ2019/sg/rpsg/arh_rpsg2019_u.html.

Răuță, C., & Cârstea, S. (1983). Preventing and combating soil pollution. Bucharest, Ceres publishing house.

Khan, S., Naushad, M., Lima, E. C., Zhang, S., Shaheen, S. M., & Rinklebe, J. (2021). Global soil pollution by toxic elements: current status and future perspectives on the risk assessment and remediation strategies – a review. Journal of Hazardous Materials, 417, 126039. https://doi.org/10.1016/j.jhazmat.2021.126039.

Bruulsema, T. (2018). Managing nutrients to mitigate soil pollution. Environmental Pollution, 243, 1602–1605. https://doi.org/10.1016/j.envpol.2018.09.132.

Poderati, G. (2022). Analysis of China’s legislation on soil contamination in the light of the realization of an ecological civilization. Ecocycles, 8(1), 8–15. https://doi.org/10.19040/ecocycles.v8i1.215.

Published
2022-12-20
How to Cite
Ulko, Y., Moskalenko, A., Kucher, A., Pavlenko, O., & Serbov, M. (2022). Economic evaluation of the consequences of soil pollution in the system of sustainable land management. Agricultural and Resource Economics: International Scientific E-Journal, 8(4), 266-300. https://doi.org/10.51599/are.2022.08.04.12
Section
Articles