Assesment the influence of debt capital on the bankruptcy of enterprises in the agricultural sector
DOI:
https://doi.org/10.51599/are.2023.09.02.08Keywords:
agricultural sector, bankruptcy forecasting, assessment, financial ratios, intelligent data analysis, financial management.Abstract
Purpose. The purpose of this study is to improve the approach to assessing the influence of loan capital on the bankruptcy of enterprises in the agricultural sector in the pre-war period.
Methodology / approach. The article analyzes the significance of Altman, Lees, Springate, Duran, Tereshchenko and Matviychuk models. For the statistical base, open data for 2020 of 500 agricultural enterprises of Ukraine were selected, of which 12 became bankrupt according to the Unified Register of Enterprises, in respect of which bankruptcy proceedings were initiated according to the data of 2021–2022. Selected models of bankruptcy diagnosis, including loan capital (components of loan capital), were tested for the purpose of analyzing their effectiveness. Python Programming Language was used to test selected models for predicting the bankruptcy of agricultural enterprises. To evaluate the effectiveness of the models, such metrics as accuracy and the matrix of inconsistencies were calculated.
Results. The Altman, Lis, Springate, Duran, Tereshchenko models, except the Matviychuk model, performed well on a statistical sample for determining bankrupt agricultural enterprises, which later really became bankrupt. But those that were subsequently stable were also classified as bankrupt. Duran's model, in which loan capital plays a significant role, showed the best results. Therefore, the amount of loan capital is important in predicting the bankruptcy of agricultural enterprises. The results of the paper refer to the pre-war period, however, the approach to processing data and forming conclusions is universal and can be applied to more recent data if available.
Originality / scientific novelty. The novelty is the improvement of the approach to assessing the impact of loan capital on the bankruptcy of agricultural enterprises, which is based (1) on the analysis of the effectiveness of selected models for assessing the probability of bankruptcy and (2) on the basis of a significant sample of data from the financial reports of agricultural enterprises, which emphasizes the objectivity of the results obtained, as well as (3) on the use of Python for testing bankruptcy prediction models.
Practical value / implications. Assessing the relationship between loan capital and bankruptcy can provide insight into the financial condition of agricultural enterprises and provide an opportunity to determine strategies to prevent or reduce bankruptcy risks. For agricultural enterprises, the results of this assessment can serve as a basis for providing recommendations for managing debt capital and other financial resources in order to avoid bankruptcy.
References
Altman E. I. A further empirical investigation of the bankruptcy cost question. Journal of Finance. 1984. Vol. 39. No. 4. Pр. 1067–1089. https://doi.org/10.2307/2327613.
Springate G. L. V. Predicting the possibility of failure in a Canadian firm: a discriminant analysis. Canada: Simon Fraser University, 1978. 164 с.
Alaminos D., del Castillo A., Fernández M. Á. Correction: a global model for bankruptcy prediction. PLoS ONE. 2018. Vol. 13(11). e0208476. https://doi.org/10.1371/journal.pone.0208476.
Jaki A., Cwiek W. Bankruptcy prediction models based on value measures. Journal of Risk and Financial Management. 2021. Vol. 14(1). 6. https://doi.org/10.3390/jrfm14010006.
Horváthová J., Mokrišová M. Risk of bankruptcy, its determinants and models. Risks. 2018. Vol. 6(4). 117. https://doi.org/10.3390/risks6040117.
Дорогань-Писаренко Л. О., Єгорова О. В., Яснолоб І. О. Особливості оцінки ймовірності банкрутства аграрних підприємств в Україні. Інфраструктура ринку. 2022. Вип. 68. C. 223–231. https://doi.org/10.32843/infrastruct68-39.
Матвійчук А. В. Діагностика банкрутства підприємств. Економіка України. 2007. № 4. С. 20–28.
Терещенко О. О. Антикризове фінансове управління на підприємстві: моногр. Київ: КНЕУ, 2004. 268 с.
Транченко О. М. Прогнозування банкрутства в контексті забезпечення конкурентоспроможності сільського господарства. Економіка та держава. 2013. Вип. 12. С. 44–46.
Dorohan-Pysarenko L., Rębilas R., Yehorova O., Yasnolob I. et al. Methodological peculiarities of probability estimation of bankruptcy of agrarian enterprises in Ukraine. Agricultural and Resource Economics. 2021. Vol. 7. No. 2. Pp. 20–39. https://doi.org/10.51599/are.2021.07.02.02.
Hosaka T. Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert Systems with Applications. 2019. Vol. 117. Рр. 287–299. https://doi.org/10.1016/j.eswa.2018.09.039.
Papana A., Spyridou A. Bankruptcy prediction: the case of the Greek market. Forecasting. 2020. Vol. 2(4). Pр. 505–525. https://doi.org/10.3390/forecast2040027.
Старченко Л. В., Старовойт О. В., Семидоцька І. І. Використання методу нечітких множин для діагностики ризику банкрутства підприємства. Механізм регулювання економіки. 2012. № 3. С. 83–91.
Achkasova S. Implementation the fuzzy modeling technology by means of fuzzytech into the process of management the riskiness of business entities activity. Eastern-European Journal of Enterprise Technologies. 2020. Vol. 5. Is. 3(107). Pp. 39–54. https://doi.org/10.15587/1729-4061.2020.209836.
Milić D., Tekić D., Zekić V., Novaković T. et al. The impact of profitability and productivity on the risk of bankruptcy for agricultural and food companies in Vojvodina. Journal of Agricultural Sciences (Belgrade). 2021. Vol. 68. Is. 3. Pp. 805–822. https://doi.org/10.5937/ekoPolj2103805M.
Dinterman R., Katchova A. L., Harris M. J. Financial stress ad farm bankruptcies in U.S. agriculture. Agricultural Finance Review. 2018. Vol. 78. No. 4. Pр. 441–456. https://doi.org/10.1108/AFR-05-2017-0030.
Mayovets Y., Vdovenko N., Shevchuk H., Zos-Kior М. et al. Simulation modeling of the financial risk of bankruptcy of agricultural enterprises in the context of COVID-19. Journal of Hygienic Engineering and Design. 2021. Vol. 36. Pp. 192–198.
Kim K. J., Lee Y. S. Predicting corporate bankruptcy using machine learning and multi-objective feature selection techniques. Journal of Business Research. 2018. Vol. 91. Рр. 220–227.
Ullah H., Wang Zh., Abbas M. G., Zhang F. et al. Association of financial distress and predicted bankruptcy: the case of Pakistani banking sector. Journal of Asian Finance, Economics and Business. 2021. Vol. 8. No. 1. Рр. 573–585. https://doi.org/10.13106/jafeb.2021.vol8.no1.573.
Wang H., Zhou Q., Wang M., Cai Y. A hybrid model for bankruptcy prediction using feature selection and machine learning. Journal of Ambient Intelligence and Humanized Computing. 2020. Vol. 11. No. 8. Рр. 3347–3356.
Oliynyk-Dunn O., Wasilewski M., Wasilewska N., Okhrimenko I. et al. Transformation of the financing patterns of agricultural enterprises in the conditions of the financial system crisis: a case of Ukraine and the USA. Economic Annals-XXI. 2020. Vol. 182. Is. 3–4. Pp. 77–89. https://doi.org/10.21003/ea.V182-09.
Fenyves V., Pető K., Szenderák J., Harangi-Rákos M. The capital structure of agricultural enterprises in the Visegrad countries. Agricultural Economics – Czech. 2020. Vol. 66. Is. 4. Pp. 160–167. https://doi.org/10.17221/285/2019-AGRICECON.
Szomko N. Factors associated with the capital structure of Polish companies in the long and short term. Gospodarka Narodowa. The Polish Journal of Economics. 2020. Vol. 301. Is. 1. Pp. 55–74. https://doi.org/10.33119/GN/116717.
Henning J. I. F., Jordaan H. Determinants of financial sustainability for farm credit applications – a Delphi study. Sustainability. 2016. Vol. 8(1). 77. https://doi.org/10.3390/su8010077.
Zorn A., Esteves M., Baur I., Lips M. Financial ratios as indicators of economic sustainability: a quantitative analysis for swiss dairy farms. Sustainability. 2018. Vol. 10(8). Pp. 29–42. https://doi.org/10.3390/su10082942.
Lehenchuk S., Raboshuk A., Valinkevych N., Polishchuk I. et al. Analysis of financial performance determinants: evidence from Slovak agricultural companies. Agricultural and Resource Economics. 2022. Vol. 8. No. 4. Pp. 66–85. https://doi.org/10.51599/are.2022.08.04.03.
Vavrek R., Kravˇcáková Vozárová I., Kotuliˇc R. Evaluating the financial health of agricultural enterprises in the conditions of the Slovak Republic using bankruptcy models. Agriculture. 2021. Vol. 11(3). 242. https://doi.org/10.3390/agriculture11030242.
Rozhko О. D., Marenych T. H., Onegina V. M., Belyayeva L. A. et al. Bank credit in financial provision of agricultural enterprises. Financial and Credit Activity: Problems of Theory and Practice. 2019. Vol. 4. No. 31. Pp. 41–51. https://doi.org/10.18371/fcaptp.v4i31.190787.
Фінансова звітність (звіт про фінансовий стан (баланс) та звіт про прибутки та збитки та інший сукупний дохід (звіт про фінансові результати), подані як додаток до звітної (звітної нової) податкової звітності за річний податковий (звітний) період відповідно до пункту 46.2 статті 46 Податкового кодексу України. URL: https://data.gov.ua/dataset/24069422-5825-41f6-81f7-89567e5e2ac9.
Рзаєва Т. Г., Стасюк І. В. Зарубіжні методики визначення ймовірності банкрутства підприємства. Вісник Хмельницького національного університету. Економічні науки. 2010. № 3. Т. 1. С. 177–181.
Durand D. Risk elements in consumer instalment financing. New York: National Bureau of Economic Research, 1941. 163 p.
References
Altman, E. I. (1984). A further empirical investigation of the bankruptcy cost question. Journal of Finance, 39(4), 1067–1089. https://doi.org/10.2307/2327613.
Springate, G. L. V. (1978). Predicting the possibility of failure in a Canadian firm: a discriminant analysis. Simon Fraser University, Canada.
Alaminos, D., del Castillo, A., & Fernández, M. Á. (2018). Correction: a global model for bankruptcy prediction. PLoS ONE, 13(11), e0208476. https://doi.org/10.1371/journal.pone.0208476.
Jaki, A., & ́Cwiek, W. (2021). Bankruptcy prediction models based on value measures. Journal of Risk and Financial Management, 14(1), 6. https://doi.org/10.3390/jrfm14010006.
Horváthová, J., & Mokrišová, M. (2018). Risk of bankruptcy, its determinants and models. Risks, 6(4), 117. https://doi.org/10.3390/risks6040117.
Dorohan-Pysarenko, L. O., Yehorova, O. V., & Yasnolob, І. O. (2022). Features of the assessment of the probability of bankruptcy of ukrainian agricultural enterprises. Іnfrastruktura rinku, 68, 223–231. https://doi.org/10.32843/infrastruct68-39.
Matviichuk, A. V. (2007). Diagnosis of bankruptcy of enterprises. Economy of Ukraine, 4, 20–28.
Tereshchenko, O. O. (2004). Antykryzove finansove upravlinnia na pidpryiemstvi [Anti-crisis financial management at the enterprise]. KNEU, Kyiv.
Tranchenko, O. M. (2013). Bankruptcy prediction in the context of the competitiveness of agriculture. Ekonomika ta derzhava, 12, 44–46.
Dorohan-Pysarenko, L., Rębilas, R., Yehorova, O., Yasnolob, I., & Kononenko, Z. (2021). Methodological peculiarities of probability estimation of bankruptcy of agrarian enterprises in Ukraine. Agricultural and Resource Economics, 7(2), 20–39. https://doi.org/10.51599/are.2021.07.02.02.
Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert Systems with Applications, 117, 287–299. https://doi.org/10.1016/j.eswa.2018.09.039.
Papana, A., & Spyridou, A. (2020). Bankruptcy prediction: the case of the Greek market. Forecasting, 2(4), 505–525. https://doi.org/10.3390/forecast2040027.
Starchenko, L. V., Starovoit, O. V., & Semydotska, І. І. (2012). Using the method of fuzzy sets to diagnose the risk of bankruptcy of the enterprise. Mekhanizm rehuliuvannia ekonomiky, 3, 83–91.
Achkasova, S. (2020). Implementation the fuzzy modeling technology by means of fuzzytech into the process of management the riskiness of business entities activity. Eastern-European Journal of Enterprise Technologies, 5, (3(107)), 39–54. https://doi.org/10.15587/1729-4061.2020.209836.
Milić, D., Tekić, D., Zekić, V., Novaković, T., Popov, M., & Mihajlov, Z. (2021). The impact of profitability and productivity on the risk of bankruptcy for agricultural and food companies in Vojvodina. Journal of Agricultural Sciences (Belgrade), 68(3), 805–822. https://doi.org/10.5937/ekoPolj2103805M.
Dinterman, R., Katchova, A. L., & Harris, M. J. (2018). Financial stress ad farm bankruptcies in U.S. agriculture. Agricultural Finance Review, 78(4), 441–456. https://doi.org/10.1108/AFR-05-2017-0030.
Mayovets, Y., Vdovenko, N., Shevchuk, H., Zos-Kior, М., & Hnatenko, I. (2021). Simulation modeling of the financial risk of bankruptcy of agricultural enterprises in the context of COVID-19. Journal of Hygienic Engineering and Design, 36, 192–198.
Kim, K. J., & Lee, Y. S. (2018). Predicting corporate bankruptcy using machine learning and multi-objective feature selection techniques. Journal of Business Research, 91, 220–227.
Ullah, H., Wang, Zh., Abbas, M. G., Zhang, F., Shahzad, U., & Mahmood, M. R. (2021). Association of financial distress and predicted bankruptcy: the case of Pakistani banking sector. Journal of Asian Finance, Economics and Business, 8(1), 573–585. https://doi.org/10.13106/jafeb.2021.vol8.no1.573.
Wang, H., Zhou, Q., Wang, M., & Cai, Y. (2020). A hybrid model for bankruptcy prediction using feature selection and machine learning. Journal of Ambient Intelligence and Humanized Computing, 11(8), 3347–3356.
Oliynyk-Dunn, O., Wasilewski, M., Wasilewska, N., Okhrimenko, I., & Adamenko, V. (2020). Transformation of the financing patterns of agricultural enterprises in the conditions of the financial system crisis: a case of Ukraine and the USA. Economic Annals-XXI, 182(3–4), 77–89. https://doi.org/10.21003/ea.V182-09.
Fenyves, V., Pető, K., Szenderák, J., & Harangi-Rákos, M. (2020). The capital structure of agricultural enterprises in the Visegrad countries. Agricultural Economics – Czech, 66(4), 160–167. https://doi.org/10.17221/285/2019-AGRICECON.
Szomko, N. (2020). Factors associated with the Capital structure of polish companies in the long and short term. Gospodarka Narodowa. The Polish Journal of Economics, 301(1), 55–74. https://doi.org/10.33119/GN/116717.
Henning, J. I. F., & Jordaan, H. (2016). Determinants of financial sustainability for farm credit applications – а Delphi study. Sustainability, 8(1), 77. https://doi.org/10.3390/su8010077.
Zorn, A., Esteves, M., Baur, I., & Lips, M. (2018). Financial ratios as indicators of economic sustainability: a quantitative analysis for swiss dairy farms. Sustainability, 10(8), 29–42. https://doi.org/10.3390/su10082942.
Lehenchuk, S., Raboshuk, A., Valinkevych, N., Polishchuk, I., & Khodakyvskyy, V. (2022). Analysis of financial performance determinants: evidence from Slovak agricultural companies. Agricultural and Resource Economics, 8(4), 66–85. https://doi.org/10.51599/are.2022.08.04.03.
Vavrek, R., Kravˇcáková Vozárová, I., & Kotuliˇc, R. (2021). Evaluating the financial health of agricultural enterprises in the conditions of the Slovak Republic using bankruptcy models. Agriculture, 11(3), 242. https://doi.org/10.3390/agriculture11030242.
Rozhko, О. D., Marenych, T. H., Onegina, V. M., Belyayeva, L. A., & Maliy, O. G. (2019). Bank credit in financial provision of agricultural enterprises. Financial and Credit Activity: Problems of Theory and Practice, 4(31), 41–51. https://doi.org/10.18371/fcaptp.v4i31.190787.
Financial statements (n.d.) (statement of financial position (balance sheet) and statement of profit and loss and other comprehensive income (statement of financial results), submitted as an appendix to the reporting (new reporting) tax reporting for the annual tax (reporting) period in accordance with item 46.2 of Article 46 of the Tax Code of Ukraine. Available at: https://data.gov.ua/dataset/24069422-5825-41f6-81f7-89567e5e2ac9.
Rzaieva, T. H., & Stasiuk, I. V. (2010). Foreign methods of determining the probability of bankruptcy. Visnyk Khmelnytskoho Natsionalnoho Universytetu. Ekonomichni nauky, 3(1), 177–181.
Durand, D. (1941). Risk elements in consumer instalment financing. New York, National Bureau of Economic Research.