Forecasting agricultural land prices in Ukraine using LSTM deep neural networks

Authors

DOI:

https://doi.org/10.51599/are.2025.11.01.07

Keywords:

land price forecasting, LSTM neural networks, machine learning, agricultural land market, time series, correlation analysis, Python.

Abstract

Purpose. The purpose of this study is to develop a methodological approach for forecasting the dynamics of agricultural land prices in Ukraine based on deep neural networks LSTM (Long Short-Term Memory) and a comparative analysis of these networks. The study involved analysing the time series of agricultural land prices for 2021–2024, developing and comparing three LSTM neural network architectures, evaluating their performance, and creating a forecast for 2025.

Methodology / approach. The study uses a time series of prices for transactions on the purchase/sale of ownership rights to agricultural land plots in Ukraine for the period from July 2021 to August 2024. Three architectures of LSTM neural networks (basic, with Dropout, and deep) implemented in Python using the Pandas, Sklearn, Keras libraries. The performance of the models is evaluated using the RMSE, MAE, MSE, MAPE metrics. A correlation analysis of the relationships between price, plot area, and time characteristics (year and month of observation) was conducted.

Results. The deep LSTM model demonstrated the highest prediction accuracy with the lowest RMSE value of 2375.90. Significant correlations were found between price and land area (-0.48), as well as weak positive correlations with year and month of observation (0.17). The forecast for 2025 shows a downward trend in prices in dollar terms from 805–810 to 724–725 USD/ha. The obtained results are focused on improving the accuracy of forecasting and ensuring the adoption of informed management decisions in the field of land relations.

Originality / scientific novelty. For the first time, different architectures of LSTM neural networks are applied and compared to forecast prices on the Ukrainian agricultural land market, which allowed identifying the most efficient model. A comprehensive analysis of the time series was conducted using seasonal decomposition to take into account seasonal fluctuations and long-term trends.

Practical value / implications. The developed models and methodology create a toolkit for improving the accuracy of agricultural land price forecasting, which can be used by market participants, investors and agricultural policy makers to make informed decisions in the field of land relations.

References

Jin Y., Li W., Gil J. M. Forecasting fish prices with an artificial neural network model during the tuna fraud. Journal of Agriculture and Food Research. 2024. Vol. 18. 101340. https://doi.org/10.1016/j.jafr.2024.101340.

Xu X., Zhang Y. Edible oil wholesale price forecasts via the neural network. Energy Nexus. 2023. Vol. 12. 100250. https://doi.org/10.1016/j.nexus.2023.100250.

Avinash G., Ramasubramanian V., Ray M., Paul R. K. et al. Hidden Markov guided Deep Learning models for forecasting highly volatile agricultural commodity prices. Applied Soft Computing. 2024. Vol. 158. 111557. https://doi.org/10.1016/j.asoc.2024.111557.

Ambuj, Machavaram R. Optimizing energy expenditure in agricultural autonomous ground vehicles through a GPU-accelerated particle swarm optimization-artificial neural network framework. Cleaner Energy Systems. 2024. Vol. 9. 100130. https://doi.org/10.1016/j.cles.2024.100130.

Shah A., Khan M. A., Alzahrani A. I., Alalwan N. et al. FuzzyShallow: a framework of deep shallow neural networks and modified tree growth optimization for agriculture land cover and fruit disease recognition from remote sensing and digital imaging. Measurement. 2024. Vol. 237. 115224. https://doi.org/10.1016/j.measurement.2024.115224.

Lu R., Zhang Y., Huang Q., Zeng P. et al. A refined edge-aware convolutional neural networks for agricultural parcel delineation. International Journal of Applied Earth Observation and Geoinformation. 2024. Vol. 133. 104084. https://doi.org/10.1016/j.jag.2024.104084.

Mendoza-Bernal J., González-Vidal A., Skarmeta A. F. A convolutional neural network approach for image-based anomaly detection in smart agriculture. Expert Systems with Applications. 2024. Vol. 247. 123210. https://doi.org/10.1016/j.eswa.2024.123210.

Sakthipriya S., Naresh R. Precision agriculture based on convolutional neural network in rice production nutrient management using machine learning genetic algorithm. Engineering Applications of Artificial Intelligence. 2024. Vol. 130. 107682. https://doi.org/10.1016/j.engappai.2023.107682.

Zhang Q., Li Y. P., Huang G. H., Wang H. et al. Multivariate time series convolutional neural networks for long-term agricultural drought prediction under global warming. Agricultural Water Management. 2024. Vol. 292. 108683. https://doi.org/10.1016/j.agwat.2024.108683.

Bonfiglio A., Camaioni B., Carta V., Cristiano S. Estimating the common agricultural policy milestones and targets by neural networks. Evaluation and Program Planning. 2023. Vol. 99. 102296. https://doi.org/10.1016/j.evalprogplan.2023.102296.

Юрченко І. В. Методичні підходи до обрахунку ціни земель сільськогосподарського призначення. Ефективна економіка. 2024. № 3. https://doi.org/10.32702/2307-2105.2024.3.37.

Murugesan R., Mishra E., Krishnan A. H. Forecasting agricultural commodities prices using deep learning-based models: basic LSTM, Bi-LSTM, Stacked LSTM, CNN LSTM, and convolutional LSTM. International Journal of Sustainable Agricultural Management and Informatics. 2022. Vol. 8. Is. 3. Pp. 242–277. https://doi.org/10.1504/IJSAMI.2022.125757.

Kmytiuk T., Majore G., Bilyk T. Time series forecasting of price of the agricultural products using data science. Agricultural and Resource Economics. 2024. Vol. 10. No. 3. Pp. 5–33. https://doi.org/10.51599/are.2024.10.03.01.

Tran N.-Q., Felipe A., Ngoc T. N., Huynh T. et al. Predicting agricultural commodities prices with machine learning: a review of current research. 2023. arXiv. 2310. 18646. https://doi.org/10.48550/arXiv.2310.18646.

Гнатієнко В. Г., Гнатієнко Г. М., Зозуля О. Л., Снитюк В. Є. Метод прогнозування врожайності сільськогосподарських культур з використанням мультифакторного аналізу та нейронних мереж. Науковий вісник Ужгородського університету. Серія «Математика і інформатика». 2024. Т. 44. № 1. С. 93–105. https://doi.org/10.24144/2616-7700.2024.44(1).93-105.

Pasichnyk N., Dudnyk A., Opryshko O., Kiktev M. et al. Use of neural networks for planning the correct selection of plant and soil samples in precision agriculture technologies. Scientific Reports of the National University of Life and Environmental Sciences of Ukraine. 2023. Vol. 19. No. 6. https://doi.org/10.31548/dopovidi6(106).2023.005.

Shybaiev D. S., Otradskaya T. V., Stepanchuk M. V., Shybaieva N. O. et al. Predicting system for the estimated cost of real estate objects development using neural networks. The Journal of Zhytomyr State Technological University / Engineering. 2019. No. 1(83). Pp. 154–160. https://doi.org/10.26642/tn-2019-1(83)-154-160.

Bhardwaj M. R., Pawar J., Bhat A., Aggarwal, D. et al. An innovative deep learning based approach for accurate agricultural crop price prediction. 2023 IEEE 19th International Conference on Automation Science and Engineering (Auckland, 26–30 August 2023). Auckland, 2023. Pp. 1–7. https://doi.org/10.1109/CASE56687.2023.10260494.

de Freitas Cunha R. L., Silva B. Estimating crop yields with remote sensing and deep learning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2020. V-3/W2-2020. Pp. 59–64. https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-59-2020.

Graphviz Developers. Graphviz. URL: https://graphviz.org/download.

Моніторинг земельних відносин. Державна служба України з питань геодезії, картографії та кадастру. URL: https://land.gov.ua/index.php/monitorynh-zemelnykh-vidnosyn.

IEEE Spectrum. Top Programming Languages 2024. URL: https://spectrum.ieee.org/top-programming-languages-2024#toggle-gdpr.

Python Software Foundation. Welcome to Python.org. URL: https://www.python.org.

NumPy Developers. NumPy. URL: https://numpy.org.

SciPy Developers. SciPy. URL: https://scipy.org.

Pandas Development Team. Pandas. URL: https://pandas.pydata.org.

Scikit-learn Developers. Scikit-learn: machine learning in Python. URL: https://scikit-learn.org/stable.

TensorFlow. TensorFlow. URL: https://www.tensorflow.org.

REFERENCES

Jin, Y., Li, W., & Gil, J. M. (2024). Forecasting fish prices with an artificial neural network model during the tuna fraud. Journal of Agriculture and Food Research, 18, 101340. https://doi.org/10.1016/j.jafr.2024.101340.

Xu, X., & Zhang, Y. (2023). Edible oil wholesale price forecasts via the neural network. Energy Nexus, 12, 100250. https://doi.org/10.1016/j.nexus.2023.100250.

Avinash, G., Ramasubramanian, V., Ray, M., Paul, R. K., Godara, S., Harish Nayak, G. H., Kumar, R. R., … & Iquebal, M. A. (2024). Hidden Markov guided Deep Learning models for forecasting highly volatile agricultural commodity prices. Applied Soft Computing, 158, 111557. https://doi.org/10.1016/j.asoc.2024.111557.

Ambuj, & Machavaram, R. (2024). Optimizing energy expenditure in agricultural autonomous ground vehicles through a GPU-accelerated particle swarm optimization-artificial neural network framework. Cleaner Energy Systems, 9, 100130. https://doi.org/10.1016/j.cles.2024.100130.

Shah, A., Khan, M. A., Alzahrani, A. I., Alalwan, N., Hamza, A., Manic, S., Zhang, Y., & Damaševic̆ius, Y. (2024). FuzzyShallow: a framework of deep shallow neural networks and modified tree growth optimization for agriculture land cover and fruit disease recognition from remote sensing and digital imaging. Measurement, 237. 115224. https://doi.org/10.1016/j.measurement.2024.115224.

Lu, R., Zhang, Y., Huang, Q., Zeng, P., Shi, Z., & Ye, S. (2024). A refined edge-aware convolutional neural networks for agricultural parcel delineation. International Journal of Applied Earth Observation and Geoinformation, 133, 104084. https://doi.org/10.1016/j.jag.2024.104084.

Mendoza-Bernal, J., González-Vidal, A., & Skarmeta, A. F. (2024). A convolutional neural network approach for image-based anomaly detection in smart agriculture. Expert Systems with Applications, 247, 123210. https://doi.org/10.1016/j.eswa.2024.123210.

Sakthipriya, S., & Naresh, R. (2024). Precision agriculture based on convolutional neural network in rice production nutrient management using machine learning genetic algorithm. Engineering Applications of Artificial Intelligence, 130, 107682. https://doi.org/10.1016/j.engappai.2023.107682.

Zhang, Q., Li, Y. P., Huang, G. H., Wang, H., Li, Y. F., & Shen, Z. Y. (2024). Multivariate time series convolutional neural networks for long-term agricultural drought prediction under global warming. Agricultural Water Management, 292, 108683. https://doi.org/10.1016/j.agwat.2024.108683.

Bonfiglio, A., Camaioni, B., Carta, V., & Cristiano, S. (2023). Estimating the common agricultural policy milestones and targets by neural networks. Evaluation and Program Planning, 99, 102296. https://doi.org/10.1016/j.evalprogplan.2023.102296.

Yurchenko, I. V. (2024). Methodical approaches to calculating the price of agricultural land. Efektyvna Ekonomika, 3. https://doi.org/10.32702/2307-2105.2024.3.37.

Murugesan, R., Mishra, E., & Krishnan, A. H. (2022). Forecasting agricultural commodities prices using deep learning-based models: basic LSTM, Bi-LSTM, Stacked LSTM, CNN LSTM, and convolutional LSTM. International Journal of Sustainable Agricultural Management and Informatics, 8(3), 242–277. https://doi.org/10.1504/IJSAMI.2022.125757.

Kmytiuk, T., Majore, G., & Bilyk, T. (2024). Time series forecasting of price of the agricultural products using data science. Agricultural and Resource Economics, 10(3), 5–33. https://doi.org/10.51599/are.2024.10.03.01.

Tran, N.-Q., Felipe, A., Ngoc, T. N., Huynh, T., Tran, Q., Tang, A., & Nguyen, T. (2023). Predicting agricultural commodities prices with machine learning: a review of current research. arXiv. 2310, 18646. https://doi.org/10.48550/arXiv.2310.18646.

Hnatiienko, V. H., Hnatiienko, H. M., Zozulia, O. L., & Snytiuk, V. Ye. (2024). Method of forecasting yield of agricultural crops using multifactor analysis and neural networks. Scientific Bulletin of Uzhhorod University. Series of Mathematics and Informatics, 44(1), 93–105. https://doi.org/10.24144/2616-7700.2024.44(1).93-105.

Pasichnyk, N., Dudnyk, A., Opryshko, O., Kiktev, M., & Petrenko, M. (2023). Use of neural networks for planning the correct selection of plant and soil samples in precision agriculture technologies. Scientific Reports of the National University of Life and Environmental Sciences of Ukraine, 19(6). https://doi.org/10.31548/dopovidi6(106).2023.005.

Shybaiev, D. S., Otradskaya, T. V., Stepanchuk, M. V., Shybaieva, N. O., & Rudnichenko, N. D. (2019). Predicting system for the estimated cost of real estate objects development using neural networks. The Journal of Zhytomyr State Technological University / Engineering, 1(83), 154–160. https://doi.org/10.26642/tn-2019-1(83)-154-160.

Bhardwaj, M. R., Pawar, J., Bhat, A., Aggarwal, D., Enaganti, І., Sagar, K., & Narahari, Y. (2023). An innovative deep learning based approach for accurate agricultural crop price prediction. 2023 IEEE 19th International Conference on Automation Science and Engineering, Auckland, New Zealand. https://doi.org/10.1109/CASE56687.2023.10260494.

de Freitas Cunha R. L., & Silva B. (2020). Estimating crop yields with remote sensing and deep learning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3/W2-2020, 59–64. https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-59-2020.

Graphviz Developers (2024). Graphviz. Available at: https://graphviz.org/download.

State Service of Ukraine for Geodesy, Cartography and Cadastre (2024). Monitoring of land relations. Available at: https://land.gov.ua/index.php/monitorynh-zemelnykh-vidnosyn.

IEEE Spectrum (2024). Top Programming Languages 2024. Available at: https://spectrum.ieee.org/top-programming-languages-2024#toggle-gdpr.

Python Software Foundation. (2024). Welcome to Python.org. Available at: https://www.python.org.

NumPy Developers (2024). NumPy. Available at: https://numpy.org.

SciPy Developers (2024). SciPy. Available at: https://scipy.org.

Pandas Development Team (2024). Pandas. Available at: https://pandas.pydata.org.

Scikit-learn Developers (2024). Scikit-learn: machine learning in Python. Available at: https://scikit-learn.org/stable.

TensorFlow (2024). TensorFlow. Available at: https://www.tensorflow.org.

Published

2025-03-20

How to Cite

Yurchenko, I., Khodakivska, O., & Martyniuk, M. (2025). Forecasting agricultural land prices in Ukraine using LSTM deep neural networks. Agricultural and Resource Economics: International Scientific E-Journal, 11(1), 183–212. https://doi.org/10.51599/are.2025.11.01.07

Issue

Section

Articles

Most read articles by the same author(s)