Driving forces for sustainable development of smallholder sugarcane agribusiness: a system dynamics approach to circular economy strategies
DOI:
https://doi.org/10.51599/are.2025.11.02.02Keywords:
circular agriculture, smallholder sugarcane agribusiness, system dynamics approach, waste management, sustainable agribusiness model, socioeconomic and environmental indicators, Sustainable Development Goals.Abstract
Purpose. This study aims to develop a dynamic model based on Circular Economy (CE) principles to evaluate the sustainability of smallholder sugarcane agribusiness. The model addresses socioeconomic and environmental challenges in developing countries, improving income stability, product diversification, job creation across all skills, and solid waste reduction.
Methodology / approach. Smallholder agribusinesses are pivotal for rural economies but face sustainability challenges. This study addresses these challenges through CE principles. A System Dynamics approach was used to evaluate the impacts of two CE strategies (R4-Repair and R7-Repurpose). A 10-year simulation evaluates key indicators, including farmers’ income savings, product diversification, job creation, and solid waste reduction. Data was obtained from government reports, industry statistics, and stakeholder interviews.
Results. The findings reveal that the R4 strategy reduces unexpected costs, stabilises income, and increases farmers’ savings by 37.5 %. Meanwhile, the R7 strategy generates the most significant impact, with a 17.4 % reduction in solid waste and the creation of new employment opportunities at various skill levels. Together, these strategies support socioeconomic and environmental sustainability. The model also demonstrates the feasibility of implementing early-stage circular strategies in smallholder systems with limited capital and infrastructure, offering a replicable framework for similar contexts.
Originality / scientific novelty. This research offers a novel application of System Dynamics modelling in smallholder agribusiness, integrating CE principles to address the interplay between socioeconomic and environmental factors. The study fills a critical gap by focusing on small-scale farming systems in developing countries, providing a holistic evaluation of circular strategies.
Practical value / implications. The proposed model provides actionable insights for policymakers and agribusiness stakeholders to design adaptive strategies, optimise resource use, and promote sustainable development. It is particularly relevant for agrarian economies facing similar socioeconomic challenges, fostering economic resilience and sustainability.
References
Aguilar-Rivera, N. (2022). Bioindicators for the sustainability of sugar agroindustry. Sugar Tech, 24(3), 651–661. https://doi.org/10.1007/s12355-021-01105-z.
Ahmed, Z., Mahmud, S., & Hakan Acet, Dr (2022). Circular economy model for developing countries: evidence from Bangladesh. Heliyon, 8(5), e09530. https://doi.org/10.1016/j.heliyon.2022.e09530.
Anggoro, Y. (2019). Business financing pattern (lending model) for sugarcane base brown sugar production in Slumbung Village, Ngadiluwih District, Kediri Regency. Institute for Research and Community Service, Indocakti Malang College of Economics. Available at: https://oldlppm.indocakti.ac.id/foto_berita/Gula%20merah-Edit%20%20jurnal-dikonversi.pdf.
Anshori, M., Suparno, N. A., & Arif, D. (2025). Waste analysis on the production floor and proposed improvements using a lean manufacturing approach aluminum manufacturing company in East Java, Indonesia. International Journal of Process Management and Benchmarking, 19(1), 131–146. https://doi.org/10.1504/IJPMB.2025.143614.
Ariyawansha, T., Abeyrathna, D., Kodithuwakku, D., Wijayawardhana, J., Sewwandi, N., Weerasinghe, A., Pottawela, D., … & Noguchi, R. (2023). A systematic framework for studying two sugarcane harvesting systems based on national policy implementation in Sri Lanka. Sugar Tech, 25, 846–861. https://doi.org/10.1007/s12355-023-01262-3.
Athira, G., Bahurudeen, A., & Vishnu, V. S. (2021). Quantification of geographical proximity of sugarcane bagasse ash sources to ready-mix concrete plants for sustainable waste management and recycling. Waste Management & Research: The Journal for a Sustainable Circular Economy, 39(2), 279–290. https://doi.org/10.1177/0734242X20945375.
Barlas, Y. (1989). Multiple tests for validation of system dynamics type of simulation models. European Journal of Operational Research, 42(1), 59–87. https://doi.org/10.1016/0377-2217(89)90059-3.
Batlles-delaFuente, A., Abad-Segura, E., González-Zamar, M.-D., & Cortés-García, F. J. (2022). An evolutionary approach on the framework of circular economy applied to agriculture. Agronomy, 12(3), 620. https://doi.org/10.3390/agronomy12030620.
Bezerra, W. F. da P., Dognani, G., Alencar, L. N. de, Parizi, M. P. S., Boina, R. F., Cabrera, F. C., & Job, A. E. (2022). Chemical treatment of sugarcane bagasse and its influence on glyphosate adsorption. Matéria (Rio de Janeiro), 27(1). https://doi.org/10.1590/s1517-707620220001.1342.
Bocken, N. M. P., de Pauw, I., Bakker, C., & van der Grinten, B. (2016). Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, 33(5), 308–320. https://doi.org/10.1080/21681015.2016.1172124.
Campos Zeballos, J., Sebesvari, Z., Rhyner, J., Metz, M., & Bufon, V. B. (2022). Drought risk assessment of sugarcane-based electricity generation in the Rio dos Patos Basin, Brazil. Sustainability, 14(10), 6219. https://doi.org/10.3390/su14106219.
Cascone, S., Ingrao, C., Valenti, F., & Porto, S. M. C. (2020). Energy and environmental assessment of plastic granule production from recycled greenhouse covering films in a circular economy perspective. Journal of Environmental Management, 254, 109796. https://doi.org/10.1016/j.jenvman.2019.109796.
Coronado Racines, M. A., Osorio Gomez, J. C., & Vargas Mesa, D. S. (2022). System dynamics application as a tool to estimate environmental effects of irrigation, pest, and weed control considering a traditional sugarcane crop and an organic sugarcane crop. 2022 The 9th International Conference on Industrial Engineering and Applications, 32–37. https://doi.org/10.1145/3523132.3523138.
Costa, P. F. F., Silva, M. S., & Santos, S. L. (2014). Sustainable development of the sugarcane agribusiness. Ciência & Saúde Coletiva, 19(10), 3971–3980. https://doi.org/10.1590/1413-812320141910.09472014.
Dangerfield, B. (2020). System dynamics: introduction. In B. Dangerfield (eds), System Dynamics (pp. 3–7). Springer, New York. https://doi.org/10.1007/978-1-4939-8790-0_538.
Demczuk, A., & Padula, A. D. (2017). Using system dynamics modeling to evaluate the feasibility of ethanol supply chain in Brazil: the role of sugarcane yield, gasoline prices, and sales tax rates. Biomass and Bioenergy, 97, 186–211. https://doi.org/10.1016/j.biombioe.2016.12.021.
Directorate of Food Crops Horticulture and Estate Crops Statistics (2023). Indonesian Sugar Cane Statistics 2022. Available at: https://www.bps.go.id/id/publication/2023/11/30/3296e8514178dfdad17fc500/statistik-tebu-indonesia-2022.html.
Ellen MacArthur Foundation (2015). Towards a circular economy: business rationale for an accelerated transition. Available at: https://ellenmacarthurfoundation.org/towards-a-circular-economy-business-rationale-for-an-accelerated-transition.
Fehr, A., Urushadze, T., Zöller, N., Knerr, B., Ploeger, A., & Vogtmann, H. (2020). Establishing a sustainable waste management system in a transitional economic context: analysis of the socioeconomic dynamics. Sustainability, 12(9), 3887. https://doi.org/10.3390/su12093887.
Forrester, J. W. (1994). System dynamics, systems thinking, and soft OR. System Dynamics Review, 10(2–3), 245–256. https://doi.org/10.1002/sdr.4260100211.
Forrester, J. W., Mass, N. J., & Ryan, C. J. (1976). The system dynamics national model: understanding socioeconomic behavior and policy alternatives. Technological Forecasting and Social Change, 9(1–2), 51–68. https://doi.org/10.1016/0040-1625(76)90044-5.
Fudhla, A. F., Rachmawati, W., & Retnowati, D. (2021). Analysis of sugar import policy effects on sugar cane farmer’s income in East Java: a system dynamic approach. IOP Conference Series: Materials Science and Engineering, 1072(1), 012023. https://doi.org/10.1088/1757-899X/1072/1/012023.
Fudhla, A. F., & Wirjodirdjo, B. (2023). Hierarchic change system dynamics supply chain model: impact of demand information sharing on holding cost and downstream project completion. Eastern-European Journal of Enterprise Technologies, 1(3(121)), 25–37. https://doi.org/10.15587/1729-4061.2023.269284.
Fudhla, A. F., Wirjodirdjo, B., & Singgih, M. L. (2024). Integrating reverse cycle strategy in circular business model innovation: a case study. Foresight and STI Governance, 18(3), 84–103. Available at: https://www.researchgate.net/publication/384773115.
Gokalp, E. (2020). System dynamics modelling of bread waste problem. Pamukkale University Journal of Engineering Sciences, 26(4), 831–837. https://doi.org/10.5505/pajes.2019.20726.
Harripersadth, C., & Musonge, P. (2022). The dynamic behaviour of a binary adsorbent in a fixed bed column for the removal of Pb2+ Ions from contaminated water bodies. Sustainability, 14(13), 7662. https://doi.org/10.3390/su14137662.
Hürlimann, M., & Hürlimann, M. (2009). System dynamics. In Dealing with Real-World Complexity. Gabler. https://doi.org/10.1007/978-3-8349-8074-8_6.
Jin, X., Xu, X., Xiang, X., Bai, Q., & Zhou, Y. (2016). System-dynamic analysis on socioeconomic impacts of land consolidation in China. Habitat International, 56, 166–175. https://doi.org/10.1016/j.habitatint.2016.05.007.
Katakojwala, R., & Venkata Mohan, S. (2022). Multi-product biorefinery with sugarcane bagasse: process development for nanocellulose, lignin, and biohydrogen production and lifecycle analysis. Chemical Engineering Journal, 446, 137233. https://doi.org/10.1016/j.cej.2022.137233.
Khalili, A., Ismail, M. Y., & Ruzman, M. A. (2023). Planned preventive maintenance effects on overall equipment effectiveness: a case study in Malaysian industry. International Journal of Productivity and Quality Management, 38(3), 332. https://doi.org/10.1504/IJPQM.2023.129614.
Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: an analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221–232. https://doi.org/10.1016/j.resconrec.2017.09.005.
Korhonen, J., Nuur, C., Feldmann, A., & Birkie, S. E. (2018). Circular economy as an essentially contested concept. Journal of Cleaner Production, 175, 544–552. https://doi.org/10.1016/j.jclepro.2017.12.111.
Marandure, T., Dzama, K., Bennett, J., Makombe, G., & Mapiye, C. (2020). Application of system dynamics modelling in evaluating sustainability of low-input ruminant farming systems in Eastern Cape Province, South Africa. Ecological Modelling, 438, 109294. https://doi.org/10.1016/j.ecolmodel.2020.109294.
Ministry of Industry of the Republic of Indonesia (2023). Industrial Business Directory. Available at: https://kemenperin.go.id/direktori-perusahaan?what=Gula&prov=0&hal=4.
Mitsubishi Motors (2024). Tabel biaya perawatan truk Mitsubishi Canter Euro 4. Available at: https://konsultan-mitsubishi.com/sk-517-tabel-biaya-perawatan-truk-mitsubishi-canter-euro-4.html.
Moya-Fernández, P. J., López-Ruiz, S., Guardiola, J., & González-Gómez, F. (2021). Determinants of the acceptance of domestic use of recycled water by use type. Sustainable Production and Consumption, 27, 575–586. https://doi.org/10.1016/j.spc.2021.01.026.
Mutanga, S. S., de Vries, M., Mbohwa, C., Kumar, D. D., & Rogner, H. (2016). An integrated approach for modeling the electricity value of a sugarcane production system. Applied Energy, 177, 823–838. https://doi.org/10.1016/j.apenergy.2016.05.131.
Nasution, A. H., Aula, M., & Ardiantono, D. S. (2020). Circular economy business model design. International Journal of Integrated Supply Management, 13(2/3), 159. https://doi.org/10.1504/IJISM.2020.107848.
Oceguera-Contreras, E., Aguilar-Juarez, O., Oseguera-Galindo, D., Macías-Barragán, J., Ortiz-Torres, G., Pita-López, M. L., Domínguez, J., … & Kamen, A. (2022). Establishment of the upstream processing for renewable production of hydrogen using vermicomposting-tea and molasses as substrate. Waste Management, 139, 279–289. https://doi.org/10.1016/j.wasman.2021.12.027.
Olaya, C. (2020). System dynamics: engineering roots of model validation. In B. Dangerfield, (Ed.), System Dynamics (pp. 109–117). Springer, New York. https://doi.org/10.1007/978-1-4939-8790-0_544.
Ramos-Hernández, R., Sánchez-Ramírez, C., Jiménez-Nieto, Y. A., Rodríguez-Parada, A., Mancilla-Gómez, M., & Nuñez-Dorantes, J. C. (2021). Dynamic evaluation of livestock feed supply chain from the use of ethanol vinasses. In J. A. Zapata-Cortes, G. Alor-Hernández, C. Sánchez-Ramírez, J. L. García-Alcaraz (Eds), New Perspectives on Enterprise Decision-Making Applying Artificial Intelligence Techniques. Studies in Computational Intelligence (pp. 309–334), vol 966. Springer, Cham. https://doi.org/10.1007/978-3-030-71115-3_14.
Raza, Q.-U.-A., Bashir, M. A., Rehim, A., Sial, M. U., Ali Raza, H. M., Atif, H. M., Brito, A. F., & Geng, Y. (2021). Sugarcane industrial by-products as challenges to environmental safety and their remedies: a review. Water, 13(24), 3495. https://doi.org/10.3390/w13243495.
Rendon-Sagardi, M. A., Sanchez-Ramirez, C., Cortes-Robles, G., Alor-Hernandez, G., & Cedillo-Campos, M. G. (2014). Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico. Applied Energy, 123, 358–367. https://doi.org/10.1016/j.apenergy.2014.01.023.
Seeler, K. A. (2014). Introduction to System Dynamics. In System Dynamics (pp. 1–44). Springer, New York. https://doi.org/10.1007/978-1-4614-9152-1_1.
Shukla, S. K., Sharma, L., Jaiswal, V. P., Dwivedi, A. P., Yadav, S. K., & Pathak, A. D. (2022). Diversification options in sugarcane-based cropping systems for doubling farmers’ income in Subtropical India. Sugar Tech, 24(4), 1212–1229. https://doi.org/10.1007/s12355-022-01127-1.
Silalertruksa, T., Wirodcharuskul, C., & Gheewala, S. H. (2022). Environmental sustainability of waste circulation models for sugarcane biorefinery system in Thailand. Energies, 15(24), 9515. https://doi.org/10.3390/en15249515.
Singh, S., Srivastava, S. K., & Jangirala, S. (2021). System dynamics analysis of sugarcane supply chain in Indian sugar industry. Global Business Review, 26(2), 468–480. https://doi.org/10.1177/0972150921999521.
Stahel, W. R. (2016). The circular economy. Nature, 531, 435–438. https://doi.org/10.1038/531435a.
Thomas, D. S., & Weiss, B. (2021). Maintenance costs and advanced maintenance techniques: survey and analysis. International Journal of Prognostics and Health Management, 12(1). https://doi.org/10.36001/ijphm.2021.v12i1.2883.
Toop, T. A., Ward, S., Oldfield, T., Hull, M., Kirby, M. E., & Theodorou, M. K. (2017). AgroCycle – developing a circular economy in agriculture. Energy Procedia, 123, 76–80. https://doi.org/10.1016/j.egypro.2017.07.269.
UNDP (2023). Sustainable Development Goals Report 2023. Available at: https://unstats.un.org/sdgs/report/2023.
Vaccaro, G. L. R., Longhi, A., Moutinho, M. H. C., Scavarda, A., Lopes, C. M., dos Reis, A. N., Nunes, F., & Azevedo, D. (2018). Interrelationship among actors in ethanol production chain as a competitive and sustainable factor: the case of associative production and family-farming in Southern Brazil. Journal of Cleaner Production, 196, 1239–1255. https://doi.org/10.1016/j.jclepro.2018.06.036.
Wikurendra, E. A., Ferto, I., Nagy, I., & Nurika, G. (2022). Strengths, weaknesses, opportunities, and threats of waste management with circular economy principles in developing countries: a systematic review. Environmental Quality Management, 32(1), 87–94. https://doi.org/10.1002/tqem.21846.