Economic evaluation of models of establishment and use technologies of legume-grass


Keywords: grass cover, economic efficiency, liming, inoculation, growth stimulator, fertilizer.

Abstract

https://doi.org/10.22004/ag.econ.305561

Purpose. The aim of the study was to determine the economic efficiency of liming, inoculation, growth stimulant, mineral, composite organic-mineral fertilizers, the number of legumes and cereals mown during the season and to conduct a comparative analysis of economic efficiency of grassland use for three and five years.

Methodology / approach. Economic evaluation of the efficiency of technologies was based on experimental data. The experimental work was carried out on the stationary experience of the Institute of Agriculture of the Carpathian region of National Academy of Agrarian Sciences of Ukraine during 20112015. Meadow clover, eastern galega, Timothy grass, meadow fescue and Bromus inermis were used to create the herbage. Indicators of economic efficiency were determined by the calculation method on personally developed technological maps.

Results. According to the data of five-year research the dynamics of forage productivity of bean-cereal grass stand was determined and the economic estimation of technologies of creation and use of meadow agro phytocenosis is given. It was found that the total cost of creating grass stands was 189191 USD/ha, and the application of lime increased them to 555 USD/ha. In the first year the yield of fodder units at the level of 2.22–4.53 t/ha was obtained from the newly created legume-grass stand, and in the third year – 4.43–7.36 t/ha. In the fifth year, the forage productivity of grassland decreased to 4.25–6.53 t/ha of forage units. The highest indicators of economic efficiency of creation and use of leguminous and cereal grasses were received for three years of use, and on the average for five years the level of profitability and conditionally net income decreased a little. The most expensive measure by creating legumes is liming the soil. From an economic point of view, this measure pays off by mowing the grass twice in three years and three times in five years. The highest forage productivity of clover-cereal grassland with a conditional level of profitability of 291 %, conditionally net income of 753 USD/ha is provided by the technology of creation and use, which includes the use of composite organic-mineral fertilizer against phosphorus and potassium fertilizers.

Originality / scientific novelty. For the first time, the expediency of using composite organic-mineral fertilizers in the creation of legumes and cereals was proved, and their role in increasing fodder, energy and agro-resource potential was revealed.

Practical value / implications. The proposed models of technologies allow creating high-performance legume-cereal meadow agrophytocenoses without the use of nitrogen fertilizers with the use of composite organo-mineral preparations, which provide an average of 5.7 t/ha of fodder units in five years; contribute to increasing a conditional level of profitability to 291 %, which leads to increased efficiency of agricultural production.

References

1. Kanianska R., Kizeková M., Nováček J., Zeman M. Land-use and land-cover changes in rural areas during different political systems: а case study of Slovakia from 1782 to 2006. Land Use Policy. 2014. Vol. 36. Pp. 554–566. https://doi.org/10.1016/j.landusepol.2013.09.018.
2. Strijker D. Marginal lands in Europe – causes of decline. Basicand Applied Ecology. 2005. Vol. 6. Is. 2. Pp. 99–106. https://doi.org/10.1016/j.baae.2005.01.001.
3. Finneran E., Crosson P., O’Kiely P., Shalloo L., Forristal P. D., Wallace M. Economic modelling of an integrated grazed and conserved perennial ryegrass forage production system. Grass and Forage Science. 2012. Vol. 67. Is. 2. Pp. 162–176. https://doi.org/10.1111/j.1365-2494.2011.00832.x.
4. Hopkins A., Wilkins R. J. Temperate grassland: key developments in the last century and future perspectives. The Journal of Agricultural Science. 2006. Vol. 144. Is. 6. Pp. 503–523. https://doi.org/10.1017/S0021859606006496.
5. Huyghe C., Vliegher A. D., Van Gils B., Peeters A. Grasslands and herbivore production in Europe and effects of common policies. Versailles: Quae, 2014. 323 р.
6. Oenema O., de Klein C., Alfaroc M. Intensification of grassland and forage use: driving forces and constrains. Crop and Pasture Science. 2014. Vol. 65(6). Pp. 524–537. https://doi.org/10.1071/CP14001.
7. Peeters A. Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. Grassland science. 2009. Vol. 55. Is. 3. Pp. 113–125. https://doi.org/10.1111/j.1744-697X.2009.00154.x.
8. Huyghe C., De Vliegher A., Golinkski P. European grasslands overview: temperate region. EGF at 50: the future of European Grasslands. Proceedings of the 25 general meeting of the European grasslands federation, vol. 19 (7–11 September 2014). Aberystwyth, 2014. Pp. 29–40.
9. Isselstein J., Kayser M. (2014), Functions of grasslands and their potential in delivering ecosystem services. EGF at 50: the future of European Grasslands. Proceedings of the 25 general meeting of the European grasslands federation, vol. 19 (7–11 September 2014). Aberystwyth, 2014. Pp. 199–214.
10. Samoilyk Yu. Concept essence and structure of agrifood market. Agricultural and Resource Economics. 2016. Vol. 2. No. 4. Pp. 161–173. https://doi.org/10.22004/ag.econ.256874.
11. Fernandez F., Blanco M. Modelling the economic impacts of climate change on global and European agriculture. Review of Economic Structural Approaches. 2015. No. 9. Pp. 1–53. https://doi.org/10.5018/economics-ejournal.ja.2015-10.
12. Köhl L., Lukasiewicz C. E., Heijden M. G. A. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant, Cell & Environment. 2015. Vol. 39. Is. 1. Pp. 136–146. https://doi.org/10.1111/pce.12600.
13. Петриченко В. Ф., Тихонович І., Коц С., Патика Н., Мельничук Т., Патика В. Сільськогосподарська мікробіологія і збалансований розвиток агроекосистем. Вісник аграрної науки. 2012. № 8. C. 5–11.
14. Патика В. П., Гнатюк Т. Т., Булеца Н. М., Кириленко Л. В. Біологічний азот у системі землеробства. Землеробство. 2015. Вип. 2. С. 12–20.
15. Ates S., Keles G., Yigezu Y. A., Demirci U., Dogan S., Isik S., Sahin M. Bio-economic efficiency of creep supplementation of forage legumes or concentrate in pasture‐based lamb production system. Grass and Forage Science. 2017. Vol. 72. Is. 4. Pp. 818–832. https://doi.org/10.1111/gfs.12291.
16. Biermacher J. T., Reuter R., Kering M. K., Rogers J. K., Blanton J., Guretzky J. A., Butler T. J. Expected economic potential of substituting legumes for nitrogen in bermudagrass pastures. Crop Science. 2012. Vol. 52. Is. 4. Pp. 1923–1930. https://doi.org/10.2135/cropsci2011.08.0455.
17. Nyfeler D., Huguenin‐Elie O., Suter M., Frossard E., Connolly J., Lüscher A. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. Journal of Applied Ecology. 2009. Vol. 46. Is. 3. Pp. 683–691. https://doi.org/10.1111/j.1365-2664.2009.01653.x.
18. Бабич А. О., Кулик М. Ф., Макаренко П. С. Методика проведення дослідів з кормовиробництва і годівлі тварин. Київ: Аграрна наука, 1998. 78 c.
19. Калашников А. П., Фисинин В. И., Щеглов В. В., Клейменов Н. И. Нормы и рационы кормления сельскохозяйственных животных: справочное пособие. Москва: Знание, 2003. 456 с.
20. Ушкаренко В. О., Вожегова Р. А., Голобородько С. П., Коковіхін С. П. Статистичний аналіз результатів польових дослідів у землеробстві. Херсон: Айлант, 2013. 378 с.
21. Панахид Г. Я., Коник Г. С., Котяш У. О. Формування новостворених бобово-злакових лучних травостоїв залежно від різних видів удобрення. Передгірне та гірське землеробство і тваринництво. 2019. Вип. 65. С. 114–124. https://doi.org/10.32636/01308521.2019-(65)-10.

References
1. Kanianska, R., Kizeková, M., Nováček, J. and Zeman, M. (2014), Land-use and land-cover changes in rural areas during different political systems: а case study of Slovakia from 1782 to 2006. Land Use Policy, vol. 36, pp. 554–566. https://doi.org/10.1016/j.landusepol.2013.09.018.
2. Strijker, D. (2005), Marginal lands in Europe – causes of decline. Basicand Applied Ecology, vol. 6, is. 2, pp. 99–106. https://doi.org/10.1016/j.baae.2005.01.001.
3. Finneran, E., Crosson, P., O’Kiely, P., Shalloo, L., Forristal, P. D. and Wallace, M. (2012), Economic modelling of an integrated grazed and conserved perennial ryegrass forage production system. Grass and Forage Science, vol. 67, is. 2, pp. 162–176. https://doi.org/10.1111/j.1365-2494.2011.00832.x.
4. Hopkins, A. and Wilkins, R. J. (2006), Temperate grassland: key developments in the last century and future perspectives. The Journal of Agricultural Science, vol. 144, is. 6, pp. 503–523. https://doi.org/10.1017/S0021859606006496.
5. Huyghe, C., Vliegher, A. D., Van Gils, B. and Peeters, A. (2014), Grasslands and herbivore production in Europe and effects of common policies. Quae, Versailles, France.
6. Oenema, O., de Klein, C. and Alfaroc, M. (2014), Intensification of grassland and forage use: driving forces and constrains. Crop and Pasture Science, vol. 65(6), pp. 524–537. https://doi.org/10.1071/CP14001.
7. Peeters, A. (2009), Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. Grassland science, vol. 55, is. 3, pp. 113–125. https://doi.org/10.1111/j.1744-697X.2009.00154.x.
8. Huyghe, C., De Vliegher, A. and Golinkski, P. (2014), European grasslands overview: temperate region. EGF at 50: the future of European Grasslands. Proceedings of the 25 general meeting of the European grasslands federation, vol. 19 (September, 7–11, 2014). Aberystwyth, Wales. Pp. 29–40.
9. Isselstein, J. and Kayser, M. (2014), Functions of grasslands and their potential in delivering ecosystem services. EGF at 50: the future of European Grasslands. Proceedings of the 25 general meeting of the European grasslands federation, vol. 19 (September, 7–11, 2014). Aberystwyth, Wales. Pp. 199–214.
10. Samoilyk, Yu. (2016), Concept essence and structure of agrifood market. Agricultural and Resource Economics, vol. 2, no. 4, pp. 161–173. https://doi.org/10.22004/ag.econ.256874.
11. Fernandez, F. and Blanco, M. (2015), Modelling the Economic Impacts of Climate Change on Global and European Agriculture. Review of Economic Structural Approaches, no. 9, pp. 1–53. https://doi.org/10.5018/economics-ejournal.ja.2015-10.
12. Köhl, L., Lukasiewicz, C. E. and Heijden, M. G. A. (2015), Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant, Cell & Environment, vol. 39, is. 1, pp. 136–146. https://doi.org/10.1111/pce.12600.
13. Petrichenko, V., Tihonovich, I., Kots, S., Patyka, N., Melnichuk, T. and Patyka, V. (2012), Agricultural microbiology and balanced development of agroecosystems. Bulletin of Agricultural Science, no. 8, pp. 5–11.
14. Patyka, V. P., Gnatiuk, T. T., Buletsa, N. M. and Kyrylenko, L. V. (2015), Biological nitrogen in the farming system. Zemlerobstvo, vol. 2, pp. 12–20.
15. Ates, S., Keles, G., Yigezu, Y. A., Demirci, U., Dogan, S., Isik, S., Sahin, M. (2017), Bio-economic efficiency of creep supplementation of forage legumes or concentrate in pasture‐based lamb production system. Grass and Forage Science, vol. 72, is. 4, pp. 818–832. https://doi.org/10.1111/gfs.12291.
16. Biermacher, J. T., Reuter, R., Kering, M. K., Rogers, J. K., Blanton, J., Guretzky, J. A. and Butler, T. J. (2012), Expected economic potential of substituting legumes for nitrogen in bermudagrass pastures. Crop Science, vol. 52, is. 4, pp. 1923–1930. https://doi.org/10.2135/cropsci2011.08.0455.
17. Nyfeler, D., Huguenin‐Elie, O., Suter, M., Frossard, E., Connolly, J. and Lüscher, A. (2009), Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. Journal of Applied Ecology, vol. 46, is. 3, pp. 683–691. https://doi.org/10.1111/j.1365-2664.2009.01653.x.
18. Babich, A. O., Kulik, M. F. and Makarenko P. S. (1998), Metodychni rekomendatsiyi z kormovyrobnytstva i hordivli tvaryn [Method of holding experiments on fodder production and feeding animals], Ahrarna nauka, Kyiv, Ukraine.
19. Kalashnikov, A. P., Fisinin, V. I., Shcheglov, V. V., Kleymenov, N. I. Normy i ratsiony kormleniya sel'skokhozyaystvennykh zhivotnykh: spravochnoye posobiye [Norms and rations of feeding farm animals: a reference guide], Znanie, Moscow, Russia.
20. Ushkarenko, V. O., Vozhehova, R. A., Holoborodʹko, S. P. and Kokovikhin, S. V. (2013), Statystychnyy analiz rezulʹtativ polʹovykh doslidiv u zemlerobstvi [Statistical analysis of the results of field experiments in agriculture], Aylant, Kherson, Ukraine.
21. Panakhyd, H., Konyk, H. and Kotyash, U. (2019), Formation of new-established legume-grass meadow swards depending on different types of fertilizers. Foothill and mountain agriculture and stockbreeding, vol. 65, pp. 114–124. https://doi.org/10.32636/01308521.2019-(65)-10.
Published
2020-09-20
How to Cite
Panakhyd, H., Konyk, H., & Stasiv, O. (2020). Economic evaluation of models of establishment and use technologies of legume-grass. Agricultural and Resource Economics: International Scientific E-Journal, 6(3), 221-234. Retrieved from https://are-journal.com/index.php/are/article/view/345
Section
Articles